ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping

Detalhes bibliográficos
Autor(a) principal: Caldato, Brenno A. C. [UNESP]
Data de Publicação: 2017
Outros Autores: Achilles Filho, Ricardo [UNESP], Castanho, Jose Eduardo C. [UNESP], Todt, E., Tonidandel, F.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/163959
Resumo: ORB-SLAM2 is one of the better-known open source SLAM implementations available. However, the dependence of visual features causes it to fail in featureless environments. With the present work, we propose a new technique to improve visual odometry results given by ORB-SLAM2 using a tightly Sensor Fusion approach to integrate camera and odometer data. In this work, we use odometer readings to improve the tracking results by adding graph constraints between frames and introduce a new method for preventing the tracking loss. We test our method using three different datasets, and show an improvement in the estimated trajectory, allowing a continuous tracking without losses.
id UNSP_603a72083b7eb7af63e87d10bdd6ba53
oai_identifier_str oai:repositorio.unesp.br:11449/163959
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and MappingORB-SLAM2 is one of the better-known open source SLAM implementations available. However, the dependence of visual features causes it to fail in featureless environments. With the present work, we propose a new technique to improve visual odometry results given by ORB-SLAM2 using a tightly Sensor Fusion approach to integrate camera and odometer data. In this work, we use odometer readings to improve the tracking results by adding graph constraints between frames and introduce a new method for preventing the tracking loss. We test our method using three different datasets, and show an improvement in the estimated trajectory, allowing a continuous tracking without losses.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FINEPSao Paulo State Univ Unesp, Sch Engn, Dept Elect Engn, Bauru, BrazilSao Paulo State Univ Unesp, Sch Engn, Dept Elect Engn, Bauru, BrazilFAPESP: 2010/50650-3FINEP: 01.10.0787.00FINEP: 0904/10IeeeUniversidade Estadual Paulista (Unesp)Caldato, Brenno A. C. [UNESP]Achilles Filho, Ricardo [UNESP]Castanho, Jose Eduardo C. [UNESP]Todt, E.Tonidandel, F.2018-11-26T17:48:34Z2018-11-26T17:48:34Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject52017 Latin American Robotics Symposium (lars) And 2017 Brazilian Symposium On Robotics (sbr). New York: Ieee, 5 p., 2017.http://hdl.handle.net/11449/163959WOS:000426897500033Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 Latin American Robotics Symposium (lars) And 2017 Brazilian Symposium On Robotics (sbr)info:eu-repo/semantics/openAccess2024-06-28T13:34:35Zoai:repositorio.unesp.br:11449/163959Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:08:44.563620Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
title ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
spellingShingle ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
Caldato, Brenno A. C. [UNESP]
title_short ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
title_full ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
title_fullStr ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
title_full_unstemmed ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
title_sort ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
author Caldato, Brenno A. C. [UNESP]
author_facet Caldato, Brenno A. C. [UNESP]
Achilles Filho, Ricardo [UNESP]
Castanho, Jose Eduardo C. [UNESP]
Todt, E.
Tonidandel, F.
author_role author
author2 Achilles Filho, Ricardo [UNESP]
Castanho, Jose Eduardo C. [UNESP]
Todt, E.
Tonidandel, F.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Caldato, Brenno A. C. [UNESP]
Achilles Filho, Ricardo [UNESP]
Castanho, Jose Eduardo C. [UNESP]
Todt, E.
Tonidandel, F.
description ORB-SLAM2 is one of the better-known open source SLAM implementations available. However, the dependence of visual features causes it to fail in featureless environments. With the present work, we propose a new technique to improve visual odometry results given by ORB-SLAM2 using a tightly Sensor Fusion approach to integrate camera and odometer data. In this work, we use odometer readings to improve the tracking results by adding graph constraints between frames and introduce a new method for preventing the tracking loss. We test our method using three different datasets, and show an improvement in the estimated trajectory, allowing a continuous tracking without losses.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:48:34Z
2018-11-26T17:48:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2017 Latin American Robotics Symposium (lars) And 2017 Brazilian Symposium On Robotics (sbr). New York: Ieee, 5 p., 2017.
http://hdl.handle.net/11449/163959
WOS:000426897500033
identifier_str_mv 2017 Latin American Robotics Symposium (lars) And 2017 Brazilian Symposium On Robotics (sbr). New York: Ieee, 5 p., 2017.
WOS:000426897500033
url http://hdl.handle.net/11449/163959
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 Latin American Robotics Symposium (lars) And 2017 Brazilian Symposium On Robotics (sbr)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 5
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128760871911424