Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite

Detalhes bibliográficos
Autor(a) principal: da Costa Romeiro, Fernanda [UNESP]
Data de Publicação: 2022
Outros Autores: Martins, Alysson Stefan [UNESP], Costa e Silva, Beatriz [UNESP], Zanoni, Maria Valnice Boldrin [UNESP], Orlandi, Marcelo Ornaghi [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10800-022-01729-3
http://hdl.handle.net/11449/242214
Resumo: This study investigates the photoelectrocatalytic water splitting at Sn3O4 and ternary rGO-Sn3O4/SnO2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn3O4, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H2 evolution. H2 production at the rGO-Sn3O4/SnO2 electrode reached a value that was twice as high as that of Sn3O4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn3O4, as well as to electron excitation to the conduction band of Sn3O4 and further H2 evolution. This work provides an easy and low-cost method for obtaining Sn3O4-based materials for the production of clean energy. Graphical abstract: [Figure not available: see fulltext.]
id UNSP_62ba0ab46ef6b31904b51b7a5dd53298
oai_identifier_str oai:repositorio.unesp.br:11449/242214
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocompositeHydrogen evolution reactionPhotoelectrochemical propertiesReduced graphene oxideTin oxideThis study investigates the photoelectrocatalytic water splitting at Sn3O4 and ternary rGO-Sn3O4/SnO2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn3O4, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H2 evolution. H2 production at the rGO-Sn3O4/SnO2 electrode reached a value that was twice as high as that of Sn3O4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn3O4, as well as to electron excitation to the conduction band of Sn3O4 and further H2 evolution. This work provides an easy and low-cost method for obtaining Sn3O4-based materials for the production of clean energy. Graphical abstract: [Figure not available: see fulltext.]Financiadora de Estudos e ProjetosConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University (UNESP) Institute of Chemistry, Araraquara. 55 Prof. Francisco Degni St, SPSão Paulo State University (UNESP) Institute of Chemistry, Araraquara. 55 Prof. Francisco Degni St, SPFinanciadora de Estudos e Projetos: 0382/16CNPq: 150223/2019-6CNPq: 154509/2018-3FAPESP: 2014/50945-4FAPESP: 2017/13123-4FAPESP: 2017/26219-0FAPESP: 2019/18856-5CNPq: 465571/2014-0Universidade Estadual Paulista (UNESP)da Costa Romeiro, Fernanda [UNESP]Martins, Alysson Stefan [UNESP]Costa e Silva, Beatriz [UNESP]Zanoni, Maria Valnice Boldrin [UNESP]Orlandi, Marcelo Ornaghi [UNESP]2023-03-02T11:51:41Z2023-03-02T11:51:41Z2022-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1469-1480http://dx.doi.org/10.1007/s10800-022-01729-3Journal of Applied Electrochemistry, v. 52, n. 10, p. 1469-1480, 2022.1572-88380021-891Xhttp://hdl.handle.net/11449/24221410.1007/s10800-022-01729-32-s2.0-85136917527Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Applied Electrochemistryinfo:eu-repo/semantics/openAccess2023-03-02T11:51:42Zoai:repositorio.unesp.br:11449/242214Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:48:05.437997Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
title Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
spellingShingle Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
da Costa Romeiro, Fernanda [UNESP]
Hydrogen evolution reaction
Photoelectrochemical properties
Reduced graphene oxide
Tin oxide
title_short Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
title_full Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
title_fullStr Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
title_full_unstemmed Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
title_sort Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
author da Costa Romeiro, Fernanda [UNESP]
author_facet da Costa Romeiro, Fernanda [UNESP]
Martins, Alysson Stefan [UNESP]
Costa e Silva, Beatriz [UNESP]
Zanoni, Maria Valnice Boldrin [UNESP]
Orlandi, Marcelo Ornaghi [UNESP]
author_role author
author2 Martins, Alysson Stefan [UNESP]
Costa e Silva, Beatriz [UNESP]
Zanoni, Maria Valnice Boldrin [UNESP]
Orlandi, Marcelo Ornaghi [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv da Costa Romeiro, Fernanda [UNESP]
Martins, Alysson Stefan [UNESP]
Costa e Silva, Beatriz [UNESP]
Zanoni, Maria Valnice Boldrin [UNESP]
Orlandi, Marcelo Ornaghi [UNESP]
dc.subject.por.fl_str_mv Hydrogen evolution reaction
Photoelectrochemical properties
Reduced graphene oxide
Tin oxide
topic Hydrogen evolution reaction
Photoelectrochemical properties
Reduced graphene oxide
Tin oxide
description This study investigates the photoelectrocatalytic water splitting at Sn3O4 and ternary rGO-Sn3O4/SnO2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn3O4, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H2 evolution. H2 production at the rGO-Sn3O4/SnO2 electrode reached a value that was twice as high as that of Sn3O4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn3O4, as well as to electron excitation to the conduction band of Sn3O4 and further H2 evolution. This work provides an easy and low-cost method for obtaining Sn3O4-based materials for the production of clean energy. Graphical abstract: [Figure not available: see fulltext.]
publishDate 2022
dc.date.none.fl_str_mv 2022-10-01
2023-03-02T11:51:41Z
2023-03-02T11:51:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10800-022-01729-3
Journal of Applied Electrochemistry, v. 52, n. 10, p. 1469-1480, 2022.
1572-8838
0021-891X
http://hdl.handle.net/11449/242214
10.1007/s10800-022-01729-3
2-s2.0-85136917527
url http://dx.doi.org/10.1007/s10800-022-01729-3
http://hdl.handle.net/11449/242214
identifier_str_mv Journal of Applied Electrochemistry, v. 52, n. 10, p. 1469-1480, 2022.
1572-8838
0021-891X
10.1007/s10800-022-01729-3
2-s2.0-85136917527
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Applied Electrochemistry
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1469-1480
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129250171027456