Lê Cycles and Milnor Classes of Compact Hypersurfaces

Detalhes bibliográficos
Autor(a) principal: Bedregal, Roberto Callejas
Data de Publicação: 2012
Outros Autores: Seade, José, Morgado, Michelle Ferreira Zanchetta [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: https://mr.math.ca/article/le-cycles-and-milnor-classes-of-compact-hypersurfaces/
http://hdl.handle.net/11449/122709
Resumo: We determine the relation amongst the global Lê cycles and the Milnor classes of analytic hypersurfaces defined by a section of a very ample line bundle over a compact complex manifold. The key point is finding appropriate expressions for the global Lê cycles and for the Milnor classes in terms of polar varieties. Our starting points are an interpretation of the Lê cycles given by T. Gaffney and R. Gassler, a formula by A. Parusinski and P. Pragacz for the Milnor classes via McPherson’s functor, and a conjecture of J.-P. Brasselet, that we prove, stating that Milnor classes can be expressed in terms of polar varieties. We then use the work by R. Piegne for Mather classes, by J. Schürmann and M. Tibăr for MacPherson’s classes for constructible functions, and by D. Massey for an extension of the local Lê cycles for constructible sheaves.
id UNSP_643a187b9f41e242977df45bade40c98
oai_identifier_str oai:repositorio.unesp.br:11449/122709
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Lê Cycles and Milnor Classes of Compact HypersurfacesLê cyclesMilnor classespolar varietiesWe determine the relation amongst the global Lê cycles and the Milnor classes of analytic hypersurfaces defined by a section of a very ample line bundle over a compact complex manifold. The key point is finding appropriate expressions for the global Lê cycles and for the Milnor classes in terms of polar varieties. Our starting points are an interpretation of the Lê cycles given by T. Gaffney and R. Gassler, a formula by A. Parusinski and P. Pragacz for the Milnor classes via McPherson’s functor, and a conjecture of J.-P. Brasselet, that we prove, stating that Milnor classes can be expressed in terms of polar varieties. We then use the work by R. Piegne for Mather classes, by J. Schürmann and M. Tibăr for MacPherson’s classes for constructible functions, and by D. Massey for an extension of the local Lê cycles for constructible sheaves.Nous déterminons la relation entre les cycles de Lê globaux et les classes de Milnor des hypersurfaces analytiques définies par une section d’un fibré en droites très ample sur des variétés non-singulières complexes compactes. Le point clé consiste à trouver des expressions appropriées des cycles de Lê globaux et des classes de Milnor en termes de variétés polaires. Nos points de départ sont une interprétation des cycles de Lê donnée par T. Gaffney et R. Gassler, une formule de A. Parusinski et P. Pragacz pour les classes de Milnor via le foncteur de McPherson, et une conjecture de J.-P. Brasselet pour les classes de Milnor, que nous démontrons, qui affirme que l’on peut exprimer les classes de Milnor en fonction des classes polaires. Nous utilisons alors des travaux de R. Piene sur les classes de Mather, de J. Schürmann et M. Tibăr sur les classes de MacPherson des fonctions constructibles, et de D. Massey qui généralise les cycles de Lê locaux aux faisceaux constructibles.Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054000, SP, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054000, SP, BrasilUniversidade Estadual Paulista (Unesp)Bedregal, Roberto CallejasSeade, JoséMorgado, Michelle Ferreira Zanchetta [UNESP]2015-04-27T11:55:58Z2015-04-27T11:55:58Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article33-38https://mr.math.ca/article/le-cycles-and-milnor-classes-of-compact-hypersurfaces/Comptes Rendus Mathématiques de l'Académie des Sciences, v. 34, n. 2, p. 33-38, 2012.0706-1994http://hdl.handle.net/11449/1227096037501547949563Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComptes Rendus Mathématiques de l'Académie des Sciencesinfo:eu-repo/semantics/openAccess2021-10-22T17:27:42Zoai:repositorio.unesp.br:11449/122709Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:21:09.331142Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Lê Cycles and Milnor Classes of Compact Hypersurfaces
title Lê Cycles and Milnor Classes of Compact Hypersurfaces
spellingShingle Lê Cycles and Milnor Classes of Compact Hypersurfaces
Bedregal, Roberto Callejas
Lê cycles
Milnor classes
polar varieties
title_short Lê Cycles and Milnor Classes of Compact Hypersurfaces
title_full Lê Cycles and Milnor Classes of Compact Hypersurfaces
title_fullStr Lê Cycles and Milnor Classes of Compact Hypersurfaces
title_full_unstemmed Lê Cycles and Milnor Classes of Compact Hypersurfaces
title_sort Lê Cycles and Milnor Classes of Compact Hypersurfaces
author Bedregal, Roberto Callejas
author_facet Bedregal, Roberto Callejas
Seade, José
Morgado, Michelle Ferreira Zanchetta [UNESP]
author_role author
author2 Seade, José
Morgado, Michelle Ferreira Zanchetta [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bedregal, Roberto Callejas
Seade, José
Morgado, Michelle Ferreira Zanchetta [UNESP]
dc.subject.por.fl_str_mv Lê cycles
Milnor classes
polar varieties
topic Lê cycles
Milnor classes
polar varieties
description We determine the relation amongst the global Lê cycles and the Milnor classes of analytic hypersurfaces defined by a section of a very ample line bundle over a compact complex manifold. The key point is finding appropriate expressions for the global Lê cycles and for the Milnor classes in terms of polar varieties. Our starting points are an interpretation of the Lê cycles given by T. Gaffney and R. Gassler, a formula by A. Parusinski and P. Pragacz for the Milnor classes via McPherson’s functor, and a conjecture of J.-P. Brasselet, that we prove, stating that Milnor classes can be expressed in terms of polar varieties. We then use the work by R. Piegne for Mather classes, by J. Schürmann and M. Tibăr for MacPherson’s classes for constructible functions, and by D. Massey for an extension of the local Lê cycles for constructible sheaves.
publishDate 2012
dc.date.none.fl_str_mv 2012
2015-04-27T11:55:58Z
2015-04-27T11:55:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://mr.math.ca/article/le-cycles-and-milnor-classes-of-compact-hypersurfaces/
Comptes Rendus Mathématiques de l'Académie des Sciences, v. 34, n. 2, p. 33-38, 2012.
0706-1994
http://hdl.handle.net/11449/122709
6037501547949563
url https://mr.math.ca/article/le-cycles-and-milnor-classes-of-compact-hypersurfaces/
http://hdl.handle.net/11449/122709
identifier_str_mv Comptes Rendus Mathématiques de l'Académie des Sciences, v. 34, n. 2, p. 33-38, 2012.
0706-1994
6037501547949563
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Comptes Rendus Mathématiques de l'Académie des Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 33-38
dc.source.none.fl_str_mv Currículo Lattes
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129509786910720