A mesoscopic approach on stability and phase transition between different traffic flow states
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010 http://hdl.handle.net/11449/164756 |
Resumo: | It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-A, shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow. |
id |
UNSP_65c085b7b2904c2632195cf984e45b14 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/164756 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A mesoscopic approach on stability and phase transition between different traffic flow statesCatastrophe modelPhase transitionPotential functionLimit circleIt is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-A, shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Sao Paulo, Escola Engn Lorena, BR-05508 Sao Paulo, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, Sao Paulo, SP, BrazilShanghai Jiao Tong Univ, Shanghai, Peoples R ChinaUniv Fed Itajuba, Inst Fis & Quim, Itajuba, MG, BrazilUniv Fed Ouro Preto, Inst Ciencias Exatas & Biol, Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Fis, BR-05508 Sao Paulo, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, Sao Paulo, SP, BrazilElsevier B.V.Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Shanghai Jiao Tong UnivUniv Fed ItajubaUniv Fed Ouro PretoQian, Wei-Liang [UNESP]Wang, BinLin, KaiMachado, Romuel F.Hama, Yogiro2018-11-26T17:55:58Z2018-11-26T17:55:58Z2017-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article59-68application/pdfhttp://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010International Journal Of Non-linear Mechanics. Oxford: Pergamon-elsevier Science Ltd, v. 89, p. 59-68, 2017.0020-7462http://hdl.handle.net/11449/16475610.1016/j.ijnonlinmec.2016.11.010WOS:000393722500005WOS000393722500005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Non-linear Mechanics1,032info:eu-repo/semantics/openAccess2023-12-20T06:21:34Zoai:repositorio.unesp.br:11449/164756Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:49:15.352654Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A mesoscopic approach on stability and phase transition between different traffic flow states |
title |
A mesoscopic approach on stability and phase transition between different traffic flow states |
spellingShingle |
A mesoscopic approach on stability and phase transition between different traffic flow states Qian, Wei-Liang [UNESP] Catastrophe model Phase transition Potential function Limit circle |
title_short |
A mesoscopic approach on stability and phase transition between different traffic flow states |
title_full |
A mesoscopic approach on stability and phase transition between different traffic flow states |
title_fullStr |
A mesoscopic approach on stability and phase transition between different traffic flow states |
title_full_unstemmed |
A mesoscopic approach on stability and phase transition between different traffic flow states |
title_sort |
A mesoscopic approach on stability and phase transition between different traffic flow states |
author |
Qian, Wei-Liang [UNESP] |
author_facet |
Qian, Wei-Liang [UNESP] Wang, Bin Lin, Kai Machado, Romuel F. Hama, Yogiro |
author_role |
author |
author2 |
Wang, Bin Lin, Kai Machado, Romuel F. Hama, Yogiro |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Shanghai Jiao Tong Univ Univ Fed Itajuba Univ Fed Ouro Preto |
dc.contributor.author.fl_str_mv |
Qian, Wei-Liang [UNESP] Wang, Bin Lin, Kai Machado, Romuel F. Hama, Yogiro |
dc.subject.por.fl_str_mv |
Catastrophe model Phase transition Potential function Limit circle |
topic |
Catastrophe model Phase transition Potential function Limit circle |
description |
It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-A, shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-01 2018-11-26T17:55:58Z 2018-11-26T17:55:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010 International Journal Of Non-linear Mechanics. Oxford: Pergamon-elsevier Science Ltd, v. 89, p. 59-68, 2017. 0020-7462 http://hdl.handle.net/11449/164756 10.1016/j.ijnonlinmec.2016.11.010 WOS:000393722500005 WOS000393722500005.pdf |
url |
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010 http://hdl.handle.net/11449/164756 |
identifier_str_mv |
International Journal Of Non-linear Mechanics. Oxford: Pergamon-elsevier Science Ltd, v. 89, p. 59-68, 2017. 0020-7462 10.1016/j.ijnonlinmec.2016.11.010 WOS:000393722500005 WOS000393722500005.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal Of Non-linear Mechanics 1,032 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
59-68 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129253573656576 |