A mesoscopic approach on stability and phase transition between different traffic flow states

Detalhes bibliográficos
Autor(a) principal: Qian, Wei-Liang [UNESP]
Data de Publicação: 2017
Outros Autores: Wang, Bin, Lin, Kai, Machado, Romuel F., Hama, Yogiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010
http://hdl.handle.net/11449/164756
Resumo: It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-A, shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow.
id UNSP_65c085b7b2904c2632195cf984e45b14
oai_identifier_str oai:repositorio.unesp.br:11449/164756
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A mesoscopic approach on stability and phase transition between different traffic flow statesCatastrophe modelPhase transitionPotential functionLimit circleIt is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-A, shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Sao Paulo, Escola Engn Lorena, BR-05508 Sao Paulo, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, Sao Paulo, SP, BrazilShanghai Jiao Tong Univ, Shanghai, Peoples R ChinaUniv Fed Itajuba, Inst Fis & Quim, Itajuba, MG, BrazilUniv Fed Ouro Preto, Inst Ciencias Exatas & Biol, Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Fis, BR-05508 Sao Paulo, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, Sao Paulo, SP, BrazilElsevier B.V.Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Shanghai Jiao Tong UnivUniv Fed ItajubaUniv Fed Ouro PretoQian, Wei-Liang [UNESP]Wang, BinLin, KaiMachado, Romuel F.Hama, Yogiro2018-11-26T17:55:58Z2018-11-26T17:55:58Z2017-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article59-68application/pdfhttp://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010International Journal Of Non-linear Mechanics. Oxford: Pergamon-elsevier Science Ltd, v. 89, p. 59-68, 2017.0020-7462http://hdl.handle.net/11449/16475610.1016/j.ijnonlinmec.2016.11.010WOS:000393722500005WOS000393722500005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Non-linear Mechanics1,032info:eu-repo/semantics/openAccess2023-12-20T06:21:34Zoai:repositorio.unesp.br:11449/164756Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:49:15.352654Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A mesoscopic approach on stability and phase transition between different traffic flow states
title A mesoscopic approach on stability and phase transition between different traffic flow states
spellingShingle A mesoscopic approach on stability and phase transition between different traffic flow states
Qian, Wei-Liang [UNESP]
Catastrophe model
Phase transition
Potential function
Limit circle
title_short A mesoscopic approach on stability and phase transition between different traffic flow states
title_full A mesoscopic approach on stability and phase transition between different traffic flow states
title_fullStr A mesoscopic approach on stability and phase transition between different traffic flow states
title_full_unstemmed A mesoscopic approach on stability and phase transition between different traffic flow states
title_sort A mesoscopic approach on stability and phase transition between different traffic flow states
author Qian, Wei-Liang [UNESP]
author_facet Qian, Wei-Liang [UNESP]
Wang, Bin
Lin, Kai
Machado, Romuel F.
Hama, Yogiro
author_role author
author2 Wang, Bin
Lin, Kai
Machado, Romuel F.
Hama, Yogiro
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Shanghai Jiao Tong Univ
Univ Fed Itajuba
Univ Fed Ouro Preto
dc.contributor.author.fl_str_mv Qian, Wei-Liang [UNESP]
Wang, Bin
Lin, Kai
Machado, Romuel F.
Hama, Yogiro
dc.subject.por.fl_str_mv Catastrophe model
Phase transition
Potential function
Limit circle
topic Catastrophe model
Phase transition
Potential function
Limit circle
description It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-A, shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-01
2018-11-26T17:55:58Z
2018-11-26T17:55:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010
International Journal Of Non-linear Mechanics. Oxford: Pergamon-elsevier Science Ltd, v. 89, p. 59-68, 2017.
0020-7462
http://hdl.handle.net/11449/164756
10.1016/j.ijnonlinmec.2016.11.010
WOS:000393722500005
WOS000393722500005.pdf
url http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.010
http://hdl.handle.net/11449/164756
identifier_str_mv International Journal Of Non-linear Mechanics. Oxford: Pergamon-elsevier Science Ltd, v. 89, p. 59-68, 2017.
0020-7462
10.1016/j.ijnonlinmec.2016.11.010
WOS:000393722500005
WOS000393722500005.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal Of Non-linear Mechanics
1,032
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 59-68
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129253573656576