A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/194753 |
Resumo: | This paper presents preliminary results found by a hybrid heuristic applied to solve the Multi-Level Capacitated Lot Sizing Problem (MLCLSP). The proposed method combines a multi-population genetic algorithm and fix-and-optimize heuristic. These methods are also integrated to a mathematical programming approach. For this, a mathematical reformulation of MLCLSP model is proposed to embed the exact solution of the model in the heuristic approaches. The hybrid heuristic is evaluated in two sets of benchmark instances. The solutions found are compared with those reached by other methods from literature. The preliminary results obtained indicate that the hybrid heuristic outperforms other approaches in the majority of problems solved. |
id |
UNSP_67b246ad1c64d39102726514d8b833b1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/194753 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing ProblemGenetic algorithmsProduction planningLot sizingOptimizationHeuristic algorithmsThis paper presents preliminary results found by a hybrid heuristic applied to solve the Multi-Level Capacitated Lot Sizing Problem (MLCLSP). The proposed method combines a multi-population genetic algorithm and fix-and-optimize heuristic. These methods are also integrated to a mathematical programming approach. For this, a mathematical reformulation of MLCLSP model is proposed to embed the exact solution of the model in the heuristic approaches. The hybrid heuristic is evaluated in two sets of benchmark instances. The solutions found are compared with those reached by other methods from literature. The preliminary results obtained indicate that the hybrid heuristic outperforms other approaches in the majority of problems solved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Sao Paulo, Inst Math & Comp Sci, BR-05508 Sao Paulo, BrazilUniv Fed Lavras, Dept Comp Sci, Lavras, BrazilUniv Estadual Paulista, Dept Math Stat & Computat, Sao Paulo, BrazilUniv Estadual Paulista, Dept Math Stat & Computat, Sao Paulo, BrazilFAPESP: 2010/101330IeeeUniversidade de São Paulo (USP)Universidade Federal de Lavras (UFLA)Universidade Estadual Paulista (Unesp)Motta Toledo, Claudio FabianoRibeiro de Oliveira, Renato ResendeFranca, Paulo Morelato [UNESP]IEEE2020-12-10T16:36:33Z2020-12-10T16:36:33Z2011-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1194-12012011 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, p. 1194-1201, 2011.http://hdl.handle.net/11449/194753WOS:000312932600162Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2011 Ieee Congress On Evolutionary Computation (cec)info:eu-repo/semantics/openAccess2021-10-22T20:36:08Zoai:repositorio.unesp.br:11449/194753Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:58:38.460312Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
title |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
spellingShingle |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem Motta Toledo, Claudio Fabiano Genetic algorithms Production planning Lot sizing Optimization Heuristic algorithms |
title_short |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
title_full |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
title_fullStr |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
title_full_unstemmed |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
title_sort |
A Hybrid Heuristic Approach to Solve the Multi Level Capacitated Lot Sizing Problem |
author |
Motta Toledo, Claudio Fabiano |
author_facet |
Motta Toledo, Claudio Fabiano Ribeiro de Oliveira, Renato Resende Franca, Paulo Morelato [UNESP] IEEE |
author_role |
author |
author2 |
Ribeiro de Oliveira, Renato Resende Franca, Paulo Morelato [UNESP] IEEE |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Federal de Lavras (UFLA) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Motta Toledo, Claudio Fabiano Ribeiro de Oliveira, Renato Resende Franca, Paulo Morelato [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Genetic algorithms Production planning Lot sizing Optimization Heuristic algorithms |
topic |
Genetic algorithms Production planning Lot sizing Optimization Heuristic algorithms |
description |
This paper presents preliminary results found by a hybrid heuristic applied to solve the Multi-Level Capacitated Lot Sizing Problem (MLCLSP). The proposed method combines a multi-population genetic algorithm and fix-and-optimize heuristic. These methods are also integrated to a mathematical programming approach. For this, a mathematical reformulation of MLCLSP model is proposed to embed the exact solution of the model in the heuristic approaches. The hybrid heuristic is evaluated in two sets of benchmark instances. The solutions found are compared with those reached by other methods from literature. The preliminary results obtained indicate that the hybrid heuristic outperforms other approaches in the majority of problems solved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 2020-12-10T16:36:33Z 2020-12-10T16:36:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2011 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, p. 1194-1201, 2011. http://hdl.handle.net/11449/194753 WOS:000312932600162 |
identifier_str_mv |
2011 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, p. 1194-1201, 2011. WOS:000312932600162 |
url |
http://hdl.handle.net/11449/194753 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2011 Ieee Congress On Evolutionary Computation (cec) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1194-1201 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129380236394496 |