Família distribuição gama exponenciada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/149970 |
Resumo: | Devido aos inúmeros campos para aplicações na Análise de Sobrevivência, diferentes funções de risco são necessárias para modelar os mais diversos casos em estudo. Portanto, ao criar novas distribuições pode-se obter diferentes funções de risco com suas diferentes curvas, que podem ser utilizadas para diversos tipos de dados. Serão apresentadas três novas distribuições de probabilidade, criadas a partir de três diferentes métodos, sendo a Gama Exponenciada Estendida de Marshall Olkin, Gama Exponenciada Poisson Truncada no Zero e também a Gama Exponenciada Bivariada. Para as distribuições de probabilidade univariadas foram obtidos resultados probabilísticos, tais como o n-ésimo momento; r-ésimo momento de vida média residual; r-ésimo momento de vida média residual invertido; ordenação estocástica; entropias; desvios médios; curvas de Bonferroni e de Lorenz; assimetria, curtose e seus gráficos; estatísticas de ordem e parâmetro stress − strength. Em relação a distribuição Gama Exponenciada Bivariada foi encontrada sua função acumulada; função densidade; função marginal; função condicional e seu n-ésimo momento. Para as novas distribuições univariadas encontradas, também foram feitas simulações para diferentes valores de parâmetros com o intuito de verificar qual o melhor método de estimação, para cada parâmetro de cada distribuição. Os métodos utilizados foram: estimador de máxima verossimilhança, Mínimos Quadrados, Mínimos Quadrados Ponderados, Cramér-von-Mises, Anderson Darling, Anderson Darling -RT (cauda à direita), Anderson Darling - LT (cauda à esquerda), Anderson Darling - 2LT (cauda à esquerda de segunda ordem), Kolmogorov e também foi utilizado o método Bayesiano com priori Gama. Por último foram também realizadas aplicações em um banco de dados, uma para cada distribuição univariada, onde foi comparado o ajuste das novas distribuições propostas com outras já conhecidas na literatura. |
id |
UNSP_6835aa1892ce0fc8eb1eb46128bce87d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/149970 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Família distribuição gama exponenciadaExponentiated gamma distribution familyGama exponenciadaTeoria de distribuiçõesEstimadoresExponentiated GammaTheory of distributionsEstimatorsDevido aos inúmeros campos para aplicações na Análise de Sobrevivência, diferentes funções de risco são necessárias para modelar os mais diversos casos em estudo. Portanto, ao criar novas distribuições pode-se obter diferentes funções de risco com suas diferentes curvas, que podem ser utilizadas para diversos tipos de dados. Serão apresentadas três novas distribuições de probabilidade, criadas a partir de três diferentes métodos, sendo a Gama Exponenciada Estendida de Marshall Olkin, Gama Exponenciada Poisson Truncada no Zero e também a Gama Exponenciada Bivariada. Para as distribuições de probabilidade univariadas foram obtidos resultados probabilísticos, tais como o n-ésimo momento; r-ésimo momento de vida média residual; r-ésimo momento de vida média residual invertido; ordenação estocástica; entropias; desvios médios; curvas de Bonferroni e de Lorenz; assimetria, curtose e seus gráficos; estatísticas de ordem e parâmetro stress − strength. Em relação a distribuição Gama Exponenciada Bivariada foi encontrada sua função acumulada; função densidade; função marginal; função condicional e seu n-ésimo momento. Para as novas distribuições univariadas encontradas, também foram feitas simulações para diferentes valores de parâmetros com o intuito de verificar qual o melhor método de estimação, para cada parâmetro de cada distribuição. Os métodos utilizados foram: estimador de máxima verossimilhança, Mínimos Quadrados, Mínimos Quadrados Ponderados, Cramér-von-Mises, Anderson Darling, Anderson Darling -RT (cauda à direita), Anderson Darling - LT (cauda à esquerda), Anderson Darling - 2LT (cauda à esquerda de segunda ordem), Kolmogorov e também foi utilizado o método Bayesiano com priori Gama. Por último foram também realizadas aplicações em um banco de dados, uma para cada distribuição univariada, onde foi comparado o ajuste das novas distribuições propostas com outras já conhecidas na literatura.Due to the many fields for applications in Survival Analysis, different hazard functions are needed to modelling the various case studies. Therefore, creating new distributions can obtains different hazard functions with different graphics, which can be used for various types of data. There will be presented three new probability distributions, created from three different methods, the Marshall Olkin Extendet Exponentiated Gamma, Poisson Zero Truncated Exponentiated Gamma and the Bivariate Exponentiated Gamma. For such univariate probability distributions it will be obtained some probabilistics results, like n-th time, rth moment of residual life, r-th moment of residual life inverted, stochastic ordering, entropies, mean deviation, Bonferroni and Lorenz curve, skewness, kurtosis, order statistics and stress-strength parameter. Regarding the Bivariate Gamma Exponentiated was found your acumulated and density function; marginal function; conditional function and it’s n-th moment. For the new univariate distributions found, were also made simulations for different parameter values in order to find the best estimation method for each parameter. The methods used were: maximum likelihood, ordinary least-squares, weighted least-squares, Cramér-von-Mises, Anderson Darling, Anderson Darling - RT (right-tail), Anderson Darling - LT (left-tail), Anderson Darling - 2LT (left-tail second order), Kolmogorov and bayesian estimator with the prior Gamma. Some techniques to compare the estimators were used. Finally, applications were also performed, one for each univariate distribution, where the adjustment of some proposed distributions in relation to the database was tested.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Moala, Fernando Antônio [UNESP]Universidade Estadual Paulista (Unesp)Aguilar, Guilherme Aparecido Santos [UNESP]2017-03-27T17:03:00Z2017-03-27T17:03:00Z2017-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/14997000088283933004129046P916212695523666970000-0002-2445-0407porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-20T15:49:44Zoai:repositorio.unesp.br:11449/149970Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:35:18.759514Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Família distribuição gama exponenciada Exponentiated gamma distribution family |
title |
Família distribuição gama exponenciada |
spellingShingle |
Família distribuição gama exponenciada Aguilar, Guilherme Aparecido Santos [UNESP] Gama exponenciada Teoria de distribuições Estimadores Exponentiated Gamma Theory of distributions Estimators |
title_short |
Família distribuição gama exponenciada |
title_full |
Família distribuição gama exponenciada |
title_fullStr |
Família distribuição gama exponenciada |
title_full_unstemmed |
Família distribuição gama exponenciada |
title_sort |
Família distribuição gama exponenciada |
author |
Aguilar, Guilherme Aparecido Santos [UNESP] |
author_facet |
Aguilar, Guilherme Aparecido Santos [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moala, Fernando Antônio [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Aguilar, Guilherme Aparecido Santos [UNESP] |
dc.subject.por.fl_str_mv |
Gama exponenciada Teoria de distribuições Estimadores Exponentiated Gamma Theory of distributions Estimators |
topic |
Gama exponenciada Teoria de distribuições Estimadores Exponentiated Gamma Theory of distributions Estimators |
description |
Devido aos inúmeros campos para aplicações na Análise de Sobrevivência, diferentes funções de risco são necessárias para modelar os mais diversos casos em estudo. Portanto, ao criar novas distribuições pode-se obter diferentes funções de risco com suas diferentes curvas, que podem ser utilizadas para diversos tipos de dados. Serão apresentadas três novas distribuições de probabilidade, criadas a partir de três diferentes métodos, sendo a Gama Exponenciada Estendida de Marshall Olkin, Gama Exponenciada Poisson Truncada no Zero e também a Gama Exponenciada Bivariada. Para as distribuições de probabilidade univariadas foram obtidos resultados probabilísticos, tais como o n-ésimo momento; r-ésimo momento de vida média residual; r-ésimo momento de vida média residual invertido; ordenação estocástica; entropias; desvios médios; curvas de Bonferroni e de Lorenz; assimetria, curtose e seus gráficos; estatísticas de ordem e parâmetro stress − strength. Em relação a distribuição Gama Exponenciada Bivariada foi encontrada sua função acumulada; função densidade; função marginal; função condicional e seu n-ésimo momento. Para as novas distribuições univariadas encontradas, também foram feitas simulações para diferentes valores de parâmetros com o intuito de verificar qual o melhor método de estimação, para cada parâmetro de cada distribuição. Os métodos utilizados foram: estimador de máxima verossimilhança, Mínimos Quadrados, Mínimos Quadrados Ponderados, Cramér-von-Mises, Anderson Darling, Anderson Darling -RT (cauda à direita), Anderson Darling - LT (cauda à esquerda), Anderson Darling - 2LT (cauda à esquerda de segunda ordem), Kolmogorov e também foi utilizado o método Bayesiano com priori Gama. Por último foram também realizadas aplicações em um banco de dados, uma para cada distribuição univariada, onde foi comparado o ajuste das novas distribuições propostas com outras já conhecidas na literatura. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-27T17:03:00Z 2017-03-27T17:03:00Z 2017-03-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/149970 000882839 33004129046P9 1621269552366697 0000-0002-2445-0407 |
url |
http://hdl.handle.net/11449/149970 |
identifier_str_mv |
000882839 33004129046P9 1621269552366697 0000-0002-2445-0407 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129090917498880 |