Solutions for a class of integro-differential equations with time periodic coefficients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.emis.de/journals/AMEN/2002/011128-3.pdf http://hdl.handle.net/11449/67111 |
Resumo: | In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers. |
id |
UNSP_69910c805471ca910af4c5650f726a88 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/67111 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Solutions for a class of integro-differential equations with time periodic coefficientsIn this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.UNESP State Univ. S. Paulo S. Jose do R. Department of Computing, 15054-000 - S. Jose do Rio PretoUNESP State Univ. S. Paulo S. Jose do R. Department of Computing, 15054-000 - S. Jose do Rio PretoUniversidade Estadual Paulista (Unesp)Machado, José MárcioTsuchida, Masayoshi [UNESP]2014-05-27T11:20:34Z2014-05-27T11:20:34Z2002-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article66-71http://www.emis.de/journals/AMEN/2002/011128-3.pdfApplied Mathematics E - Notes, v. 2, p. 66-71.1607-2510http://hdl.handle.net/11449/671112-s2.0-30426678903560557415176717Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics E - Notes0,219info:eu-repo/semantics/openAccess2021-10-23T10:26:38Zoai:repositorio.unesp.br:11449/67111Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:36:03.590320Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Solutions for a class of integro-differential equations with time periodic coefficients |
title |
Solutions for a class of integro-differential equations with time periodic coefficients |
spellingShingle |
Solutions for a class of integro-differential equations with time periodic coefficients Machado, José Márcio |
title_short |
Solutions for a class of integro-differential equations with time periodic coefficients |
title_full |
Solutions for a class of integro-differential equations with time periodic coefficients |
title_fullStr |
Solutions for a class of integro-differential equations with time periodic coefficients |
title_full_unstemmed |
Solutions for a class of integro-differential equations with time periodic coefficients |
title_sort |
Solutions for a class of integro-differential equations with time periodic coefficients |
author |
Machado, José Márcio |
author_facet |
Machado, José Márcio Tsuchida, Masayoshi [UNESP] |
author_role |
author |
author2 |
Tsuchida, Masayoshi [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Machado, José Márcio Tsuchida, Masayoshi [UNESP] |
description |
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12-01 2014-05-27T11:20:34Z 2014-05-27T11:20:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.emis.de/journals/AMEN/2002/011128-3.pdf Applied Mathematics E - Notes, v. 2, p. 66-71. 1607-2510 http://hdl.handle.net/11449/67111 2-s2.0-3042667890 3560557415176717 |
url |
http://www.emis.de/journals/AMEN/2002/011128-3.pdf http://hdl.handle.net/11449/67111 |
identifier_str_mv |
Applied Mathematics E - Notes, v. 2, p. 66-71. 1607-2510 2-s2.0-3042667890 3560557415176717 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Mathematics E - Notes 0,219 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
66-71 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128538471038976 |