Solutions for a class of integro-differential equations with time periodic coefficients

Detalhes bibliográficos
Autor(a) principal: Machado, José Márcio
Data de Publicação: 2002
Outros Autores: Tsuchida, Masayoshi [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.emis.de/journals/AMEN/2002/011128-3.pdf
http://hdl.handle.net/11449/67111
Resumo: In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
id UNSP_69910c805471ca910af4c5650f726a88
oai_identifier_str oai:repositorio.unesp.br:11449/67111
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Solutions for a class of integro-differential equations with time periodic coefficientsIn this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.UNESP State Univ. S. Paulo S. Jose do R. Department of Computing, 15054-000 - S. Jose do Rio PretoUNESP State Univ. S. Paulo S. Jose do R. Department of Computing, 15054-000 - S. Jose do Rio PretoUniversidade Estadual Paulista (Unesp)Machado, José MárcioTsuchida, Masayoshi [UNESP]2014-05-27T11:20:34Z2014-05-27T11:20:34Z2002-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article66-71http://www.emis.de/journals/AMEN/2002/011128-3.pdfApplied Mathematics E - Notes, v. 2, p. 66-71.1607-2510http://hdl.handle.net/11449/671112-s2.0-30426678903560557415176717Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics E - Notes0,219info:eu-repo/semantics/openAccess2021-10-23T10:26:38Zoai:repositorio.unesp.br:11449/67111Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:36:03.590320Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Solutions for a class of integro-differential equations with time periodic coefficients
title Solutions for a class of integro-differential equations with time periodic coefficients
spellingShingle Solutions for a class of integro-differential equations with time periodic coefficients
Machado, José Márcio
title_short Solutions for a class of integro-differential equations with time periodic coefficients
title_full Solutions for a class of integro-differential equations with time periodic coefficients
title_fullStr Solutions for a class of integro-differential equations with time periodic coefficients
title_full_unstemmed Solutions for a class of integro-differential equations with time periodic coefficients
title_sort Solutions for a class of integro-differential equations with time periodic coefficients
author Machado, José Márcio
author_facet Machado, José Márcio
Tsuchida, Masayoshi [UNESP]
author_role author
author2 Tsuchida, Masayoshi [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Machado, José Márcio
Tsuchida, Masayoshi [UNESP]
description In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
publishDate 2002
dc.date.none.fl_str_mv 2002-12-01
2014-05-27T11:20:34Z
2014-05-27T11:20:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.emis.de/journals/AMEN/2002/011128-3.pdf
Applied Mathematics E - Notes, v. 2, p. 66-71.
1607-2510
http://hdl.handle.net/11449/67111
2-s2.0-3042667890
3560557415176717
url http://www.emis.de/journals/AMEN/2002/011128-3.pdf
http://hdl.handle.net/11449/67111
identifier_str_mv Applied Mathematics E - Notes, v. 2, p. 66-71.
1607-2510
2-s2.0-3042667890
3560557415176717
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Mathematics E - Notes
0,219
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 66-71
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128538471038976