Existence of a BV solution for a mean curvature equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jde.2021.07.021 http://hdl.handle.net/11449/222061 |
Resumo: | We prove the existence of a bounded variation solution for a quasilinear elliptic problem involving the mean curvature operator and a sublinear nonlinearity. We obtain such a solution as the limit of the solutions of another quasilinear elliptic problem involving a parameter p>1 as p→1+. The analysis requires estimates independent on p, as well as a precise version of the weak Euler-Lagrange equation satisfied by the solution. |
id |
UNSP_69ec8244ca5b3e47cc2e5ef1edb09426 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/222061 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Existence of a BV solution for a mean curvature equationExistence of solutionFunctions of bounded variationGeometric measure theoryMean curvature equationWe prove the existence of a bounded variation solution for a quasilinear elliptic problem involving the mean curvature operator and a sublinear nonlinearity. We obtain such a solution as the limit of the solutions of another quasilinear elliptic problem involving a parameter p>1 as p→1+. The analysis requires estimates independent on p, as well as a precise version of the weak Euler-Lagrange equation satisfied by the solution.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista Unesp Departamento de Matemática e Computação, Rua Roberto Simonsen, 305Universidade Estadual de Campinas IMECC Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651Universidade Estadual Paulista Unesp Departamento de Matemática e Computação, Rua Roberto Simonsen, 305FAPESP: 2019/02512-5FAPESP: 2019/14330-9CNPq: 303788/2018-6Universidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Pimenta, Marcos T.O. [UNESP]Montenegro, Marcelo2022-04-28T19:42:09Z2022-04-28T19:42:09Z2021-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article51-64http://dx.doi.org/10.1016/j.jde.2021.07.021Journal of Differential Equations, v. 299, p. 51-64.1090-27320022-0396http://hdl.handle.net/11449/22206110.1016/j.jde.2021.07.0212-s2.0-85111297667Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Differential Equationsinfo:eu-repo/semantics/openAccess2022-04-28T19:42:09Zoai:repositorio.unesp.br:11449/222061Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:59:19.830009Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Existence of a BV solution for a mean curvature equation |
title |
Existence of a BV solution for a mean curvature equation |
spellingShingle |
Existence of a BV solution for a mean curvature equation Pimenta, Marcos T.O. [UNESP] Existence of solution Functions of bounded variation Geometric measure theory Mean curvature equation |
title_short |
Existence of a BV solution for a mean curvature equation |
title_full |
Existence of a BV solution for a mean curvature equation |
title_fullStr |
Existence of a BV solution for a mean curvature equation |
title_full_unstemmed |
Existence of a BV solution for a mean curvature equation |
title_sort |
Existence of a BV solution for a mean curvature equation |
author |
Pimenta, Marcos T.O. [UNESP] |
author_facet |
Pimenta, Marcos T.O. [UNESP] Montenegro, Marcelo |
author_role |
author |
author2 |
Montenegro, Marcelo |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Pimenta, Marcos T.O. [UNESP] Montenegro, Marcelo |
dc.subject.por.fl_str_mv |
Existence of solution Functions of bounded variation Geometric measure theory Mean curvature equation |
topic |
Existence of solution Functions of bounded variation Geometric measure theory Mean curvature equation |
description |
We prove the existence of a bounded variation solution for a quasilinear elliptic problem involving the mean curvature operator and a sublinear nonlinearity. We obtain such a solution as the limit of the solutions of another quasilinear elliptic problem involving a parameter p>1 as p→1+. The analysis requires estimates independent on p, as well as a precise version of the weak Euler-Lagrange equation satisfied by the solution. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-25 2022-04-28T19:42:09Z 2022-04-28T19:42:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jde.2021.07.021 Journal of Differential Equations, v. 299, p. 51-64. 1090-2732 0022-0396 http://hdl.handle.net/11449/222061 10.1016/j.jde.2021.07.021 2-s2.0-85111297667 |
url |
http://dx.doi.org/10.1016/j.jde.2021.07.021 http://hdl.handle.net/11449/222061 |
identifier_str_mv |
Journal of Differential Equations, v. 299, p. 51-64. 1090-2732 0022-0396 10.1016/j.jde.2021.07.021 2-s2.0-85111297667 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Differential Equations |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
51-64 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128731616641024 |