Camera calibration using detection and neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3182/20130522-3-BR-4036.00077 http://hdl.handle.net/11449/227192 |
Resumo: | Several applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC. |
id |
UNSP_6ad37c8bdbf3e555a1c6b4e536cb17cc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/227192 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Camera calibration using detection and neural networksCamera calibrationComputer visionHarris corner extractionNeural networksSeveral applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC.Electrical Engineering Departament Federal Techonological University of Paraná, Cornélio Procópio, PR 86300-000Electrical Engineering Departament Federal Techonological University of Paraná, Curitiba, PR 80230-901Electrical Engineering Departament State University Júlio de Mesquita Filho, Bauru, SP 17015-970Electrical Engineering Departament State University Júlio de Mesquita Filho, Bauru, SP 17015-970Federal Techonological University of ParanáUniversidade Estadual Paulista (UNESP)Pedra, André Vitor Bosisio MouraMendonça, MarcioFinocchio, Marco Antonio FerreiraDe Arruda, Lúcia Valéria RamosCastanho, José Eduardo Cogo [UNESP]2022-04-29T07:11:53Z2022-04-29T07:11:53Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject245-250http://dx.doi.org/10.3182/20130522-3-BR-4036.00077IFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013.1474-6670http://hdl.handle.net/11449/22719210.3182/20130522-3-BR-4036.000772-s2.0-84881062284Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIFAC Proceedings Volumes (IFAC-PapersOnline)info:eu-repo/semantics/openAccess2024-06-28T13:34:36Zoai:repositorio.unesp.br:11449/227192Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:24:29.489710Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Camera calibration using detection and neural networks |
title |
Camera calibration using detection and neural networks |
spellingShingle |
Camera calibration using detection and neural networks Pedra, André Vitor Bosisio Moura Camera calibration Computer vision Harris corner extraction Neural networks |
title_short |
Camera calibration using detection and neural networks |
title_full |
Camera calibration using detection and neural networks |
title_fullStr |
Camera calibration using detection and neural networks |
title_full_unstemmed |
Camera calibration using detection and neural networks |
title_sort |
Camera calibration using detection and neural networks |
author |
Pedra, André Vitor Bosisio Moura |
author_facet |
Pedra, André Vitor Bosisio Moura Mendonça, Marcio Finocchio, Marco Antonio Ferreira De Arruda, Lúcia Valéria Ramos Castanho, José Eduardo Cogo [UNESP] |
author_role |
author |
author2 |
Mendonça, Marcio Finocchio, Marco Antonio Ferreira De Arruda, Lúcia Valéria Ramos Castanho, José Eduardo Cogo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Federal Techonological University of Paraná Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Pedra, André Vitor Bosisio Moura Mendonça, Marcio Finocchio, Marco Antonio Ferreira De Arruda, Lúcia Valéria Ramos Castanho, José Eduardo Cogo [UNESP] |
dc.subject.por.fl_str_mv |
Camera calibration Computer vision Harris corner extraction Neural networks |
topic |
Camera calibration Computer vision Harris corner extraction Neural networks |
description |
Several applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 2022-04-29T07:11:53Z 2022-04-29T07:11:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3182/20130522-3-BR-4036.00077 IFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013. 1474-6670 http://hdl.handle.net/11449/227192 10.3182/20130522-3-BR-4036.00077 2-s2.0-84881062284 |
url |
http://dx.doi.org/10.3182/20130522-3-BR-4036.00077 http://hdl.handle.net/11449/227192 |
identifier_str_mv |
IFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013. 1474-6670 10.3182/20130522-3-BR-4036.00077 2-s2.0-84881062284 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
IFAC Proceedings Volumes (IFAC-PapersOnline) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
245-250 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129064022573056 |