Camera calibration using detection and neural networks

Detalhes bibliográficos
Autor(a) principal: Pedra, André Vitor Bosisio Moura
Data de Publicação: 2013
Outros Autores: Mendonça, Marcio, Finocchio, Marco Antonio Ferreira, De Arruda, Lúcia Valéria Ramos, Castanho, José Eduardo Cogo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3182/20130522-3-BR-4036.00077
http://hdl.handle.net/11449/227192
Resumo: Several applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC.
id UNSP_6ad37c8bdbf3e555a1c6b4e536cb17cc
oai_identifier_str oai:repositorio.unesp.br:11449/227192
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Camera calibration using detection and neural networksCamera calibrationComputer visionHarris corner extractionNeural networksSeveral applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC.Electrical Engineering Departament Federal Techonological University of Paraná, Cornélio Procópio, PR 86300-000Electrical Engineering Departament Federal Techonological University of Paraná, Curitiba, PR 80230-901Electrical Engineering Departament State University Júlio de Mesquita Filho, Bauru, SP 17015-970Electrical Engineering Departament State University Júlio de Mesquita Filho, Bauru, SP 17015-970Federal Techonological University of ParanáUniversidade Estadual Paulista (UNESP)Pedra, André Vitor Bosisio MouraMendonça, MarcioFinocchio, Marco Antonio FerreiraDe Arruda, Lúcia Valéria RamosCastanho, José Eduardo Cogo [UNESP]2022-04-29T07:11:53Z2022-04-29T07:11:53Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject245-250http://dx.doi.org/10.3182/20130522-3-BR-4036.00077IFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013.1474-6670http://hdl.handle.net/11449/22719210.3182/20130522-3-BR-4036.000772-s2.0-84881062284Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIFAC Proceedings Volumes (IFAC-PapersOnline)info:eu-repo/semantics/openAccess2024-06-28T13:34:36Zoai:repositorio.unesp.br:11449/227192Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:24:29.489710Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Camera calibration using detection and neural networks
title Camera calibration using detection and neural networks
spellingShingle Camera calibration using detection and neural networks
Pedra, André Vitor Bosisio Moura
Camera calibration
Computer vision
Harris corner extraction
Neural networks
title_short Camera calibration using detection and neural networks
title_full Camera calibration using detection and neural networks
title_fullStr Camera calibration using detection and neural networks
title_full_unstemmed Camera calibration using detection and neural networks
title_sort Camera calibration using detection and neural networks
author Pedra, André Vitor Bosisio Moura
author_facet Pedra, André Vitor Bosisio Moura
Mendonça, Marcio
Finocchio, Marco Antonio Ferreira
De Arruda, Lúcia Valéria Ramos
Castanho, José Eduardo Cogo [UNESP]
author_role author
author2 Mendonça, Marcio
Finocchio, Marco Antonio Ferreira
De Arruda, Lúcia Valéria Ramos
Castanho, José Eduardo Cogo [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Federal Techonological University of Paraná
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Pedra, André Vitor Bosisio Moura
Mendonça, Marcio
Finocchio, Marco Antonio Ferreira
De Arruda, Lúcia Valéria Ramos
Castanho, José Eduardo Cogo [UNESP]
dc.subject.por.fl_str_mv Camera calibration
Computer vision
Harris corner extraction
Neural networks
topic Camera calibration
Computer vision
Harris corner extraction
Neural networks
description Several applications use robotic vision, such as a robot navigating through an unknown surrounding, can use vision as main navigate sensor. This paper focuses on studying camera calibration via stereo vision by means of neural network. A neurocalibration method is proposed based on the neural networks ability to learn nonlinear relationship among a two and three dimension coordinate systems and also its information generalization skill. The data used to train neural network mapping are generated from a calibration grid point obtained through the use of Harris edge detection algorithm. The experimental results indicated that the neurocalibration method is feasible and efficient. © 2013 IFAC.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
2022-04-29T07:11:53Z
2022-04-29T07:11:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3182/20130522-3-BR-4036.00077
IFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013.
1474-6670
http://hdl.handle.net/11449/227192
10.3182/20130522-3-BR-4036.00077
2-s2.0-84881062284
url http://dx.doi.org/10.3182/20130522-3-BR-4036.00077
http://hdl.handle.net/11449/227192
identifier_str_mv IFAC Proceedings Volumes (IFAC-PapersOnline), v. 46, n. 7, p. 245-250, 2013.
1474-6670
10.3182/20130522-3-BR-4036.00077
2-s2.0-84881062284
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IFAC Proceedings Volumes (IFAC-PapersOnline)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 245-250
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129064022573056