Parallel fuzzy minimals on GPU

Detalhes bibliográficos
Autor(a) principal: Manacero, Aleardo [UNESP]
Data de Publicação: 2022
Outros Autores: Guariglia, Emanuel [UNESP], de Souza, Thiago Alexandre [UNESP], Lobato, Renata Spolon [UNESP], Spolon, Roberta [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/app12052385
http://hdl.handle.net/11449/234210
Resumo: Clustering is a classification method that organizes objects into groups based on their similarity. Data clustering can extract valuable information, such as human behavior, trends, and so on, from large datasets by using either hard or fuzzy approaches. However, this is a time-consuming problem due to the increasing volumes of data collected. In this context, sequential executions are not feasible and their parallelization is mandatory to complete the process in an acceptable time. Parallelization requires redesigning algorithms to take advantage of massively parallel platforms. In this paper we propose a novel parallel implementation of the fuzzy minimals algorithm on graphics processing unit as a high-performance low-cost solution for common clustering issues. The performance of this implementation is compared with an equivalent algorithm based on the message passing interface. Numerical simulations show that the proposed solution on graphics processing unit can achieve high performances with regards to the cost-accuracy ratio.
id UNSP_6ef5a09138f7b0f6416f2e9794e87032
oai_identifier_str oai:repositorio.unesp.br:11449/234210
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Parallel fuzzy minimals on GPUFuzzy clusteringFuzzy minimals algorithmGPUMPIParallel computingClustering is a classification method that organizes objects into groups based on their similarity. Data clustering can extract valuable information, such as human behavior, trends, and so on, from large datasets by using either hard or fuzzy approaches. However, this is a time-consuming problem due to the increasing volumes of data collected. In this context, sequential executions are not feasible and their parallelization is mandatory to complete the process in an acceptable time. Parallelization requires redesigning algorithms to take advantage of massively parallel platforms. In this paper we propose a novel parallel implementation of the fuzzy minimals algorithm on graphics processing unit as a high-performance low-cost solution for common clustering issues. The performance of this implementation is compared with an equivalent algorithm based on the message passing interface. Numerical simulations show that the proposed solution on graphics processing unit can achieve high performances with regards to the cost-accuracy ratio.Institute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), Rua Cristóvão Colombo 226, SPFaculdade de Ciências São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, SPInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), Rua Cristóvão Colombo 226, SPFaculdade de Ciências São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, SPUniversidade Estadual Paulista (UNESP)Manacero, Aleardo [UNESP]Guariglia, Emanuel [UNESP]de Souza, Thiago Alexandre [UNESP]Lobato, Renata Spolon [UNESP]Spolon, Roberta [UNESP]2022-05-01T14:35:29Z2022-05-01T14:35:29Z2022-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/app12052385Applied Sciences (Switzerland), v. 12, n. 5, 2022.2076-3417http://hdl.handle.net/11449/23421010.3390/app120523852-s2.0-85125465380Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Sciences (Switzerland)info:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/234210Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:08:08.278289Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Parallel fuzzy minimals on GPU
title Parallel fuzzy minimals on GPU
spellingShingle Parallel fuzzy minimals on GPU
Manacero, Aleardo [UNESP]
Fuzzy clustering
Fuzzy minimals algorithm
GPU
MPI
Parallel computing
title_short Parallel fuzzy minimals on GPU
title_full Parallel fuzzy minimals on GPU
title_fullStr Parallel fuzzy minimals on GPU
title_full_unstemmed Parallel fuzzy minimals on GPU
title_sort Parallel fuzzy minimals on GPU
author Manacero, Aleardo [UNESP]
author_facet Manacero, Aleardo [UNESP]
Guariglia, Emanuel [UNESP]
de Souza, Thiago Alexandre [UNESP]
Lobato, Renata Spolon [UNESP]
Spolon, Roberta [UNESP]
author_role author
author2 Guariglia, Emanuel [UNESP]
de Souza, Thiago Alexandre [UNESP]
Lobato, Renata Spolon [UNESP]
Spolon, Roberta [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Manacero, Aleardo [UNESP]
Guariglia, Emanuel [UNESP]
de Souza, Thiago Alexandre [UNESP]
Lobato, Renata Spolon [UNESP]
Spolon, Roberta [UNESP]
dc.subject.por.fl_str_mv Fuzzy clustering
Fuzzy minimals algorithm
GPU
MPI
Parallel computing
topic Fuzzy clustering
Fuzzy minimals algorithm
GPU
MPI
Parallel computing
description Clustering is a classification method that organizes objects into groups based on their similarity. Data clustering can extract valuable information, such as human behavior, trends, and so on, from large datasets by using either hard or fuzzy approaches. However, this is a time-consuming problem due to the increasing volumes of data collected. In this context, sequential executions are not feasible and their parallelization is mandatory to complete the process in an acceptable time. Parallelization requires redesigning algorithms to take advantage of massively parallel platforms. In this paper we propose a novel parallel implementation of the fuzzy minimals algorithm on graphics processing unit as a high-performance low-cost solution for common clustering issues. The performance of this implementation is compared with an equivalent algorithm based on the message passing interface. Numerical simulations show that the proposed solution on graphics processing unit can achieve high performances with regards to the cost-accuracy ratio.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-01T14:35:29Z
2022-05-01T14:35:29Z
2022-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/app12052385
Applied Sciences (Switzerland), v. 12, n. 5, 2022.
2076-3417
http://hdl.handle.net/11449/234210
10.3390/app12052385
2-s2.0-85125465380
url http://dx.doi.org/10.3390/app12052385
http://hdl.handle.net/11449/234210
identifier_str_mv Applied Sciences (Switzerland), v. 12, n. 5, 2022.
2076-3417
10.3390/app12052385
2-s2.0-85125465380
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Sciences (Switzerland)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129493479456768