Limit cycles via higher order perturbations for some piecewise differential systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physd.2018.01.007 http://hdl.handle.net/11449/164133 |
Resumo: | A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved. |
id |
UNSP_6fc94a3c764df445cd51701843dbf0e0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/164133 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Limit cycles via higher order perturbations for some piecewise differential systemsNon-smooth differential systemLimit cycle in Melnikov higher order perturbationLienard piecewise differential systemA classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved.MINECOAGAUR grantEuropean Community grantsFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, BrazilUniv Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, BrazilUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, SpainUniv Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, BrazilMINECO: MTM2013-40998-PMINECO: MTM2016-77278-PAGAUR grant: 2014 SGR568European Community grants: FP7-PEOPLE-2012-IRSES 316338European Community grants: 318999FAPESP: 2012/18780-0FAPESP: 2013/24541-0FAPESP: 2017/03352-6Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal do ABC (UFABC)Univ Autonoma BarcelonaBuzzi, Claudio A. [UNESP]Silva Lima, Mauricio FirminoTorregrosa, Joan2018-11-26T17:49:14Z2018-11-26T17:49:14Z2018-05-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article28-47application/pdfhttp://dx.doi.org/10.1016/j.physd.2018.01.007Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018.0167-2789http://hdl.handle.net/11449/16413310.1016/j.physd.2018.01.007WOS:000430766000003WOS000430766000003.pdf66828677607174450000-0003-2037-8417Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica D-nonlinear Phenomena0,861info:eu-repo/semantics/openAccess2023-11-06T06:06:26Zoai:repositorio.unesp.br:11449/164133Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:00:08.408453Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Limit cycles via higher order perturbations for some piecewise differential systems |
title |
Limit cycles via higher order perturbations for some piecewise differential systems |
spellingShingle |
Limit cycles via higher order perturbations for some piecewise differential systems Buzzi, Claudio A. [UNESP] Non-smooth differential system Limit cycle in Melnikov higher order perturbation Lienard piecewise differential system |
title_short |
Limit cycles via higher order perturbations for some piecewise differential systems |
title_full |
Limit cycles via higher order perturbations for some piecewise differential systems |
title_fullStr |
Limit cycles via higher order perturbations for some piecewise differential systems |
title_full_unstemmed |
Limit cycles via higher order perturbations for some piecewise differential systems |
title_sort |
Limit cycles via higher order perturbations for some piecewise differential systems |
author |
Buzzi, Claudio A. [UNESP] |
author_facet |
Buzzi, Claudio A. [UNESP] Silva Lima, Mauricio Firmino Torregrosa, Joan |
author_role |
author |
author2 |
Silva Lima, Mauricio Firmino Torregrosa, Joan |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal do ABC (UFABC) Univ Autonoma Barcelona |
dc.contributor.author.fl_str_mv |
Buzzi, Claudio A. [UNESP] Silva Lima, Mauricio Firmino Torregrosa, Joan |
dc.subject.por.fl_str_mv |
Non-smooth differential system Limit cycle in Melnikov higher order perturbation Lienard piecewise differential system |
topic |
Non-smooth differential system Limit cycle in Melnikov higher order perturbation Lienard piecewise differential system |
description |
A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-26T17:49:14Z 2018-11-26T17:49:14Z 2018-05-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physd.2018.01.007 Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018. 0167-2789 http://hdl.handle.net/11449/164133 10.1016/j.physd.2018.01.007 WOS:000430766000003 WOS000430766000003.pdf 6682867760717445 0000-0003-2037-8417 |
url |
http://dx.doi.org/10.1016/j.physd.2018.01.007 http://hdl.handle.net/11449/164133 |
identifier_str_mv |
Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018. 0167-2789 10.1016/j.physd.2018.01.007 WOS:000430766000003 WOS000430766000003.pdf 6682867760717445 0000-0003-2037-8417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica D-nonlinear Phenomena 0,861 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
28-47 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128735555092480 |