Limit cycles via higher order perturbations for some piecewise differential systems

Detalhes bibliográficos
Autor(a) principal: Buzzi, Claudio A. [UNESP]
Data de Publicação: 2018
Outros Autores: Silva Lima, Mauricio Firmino, Torregrosa, Joan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physd.2018.01.007
http://hdl.handle.net/11449/164133
Resumo: A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved.
id UNSP_6fc94a3c764df445cd51701843dbf0e0
oai_identifier_str oai:repositorio.unesp.br:11449/164133
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Limit cycles via higher order perturbations for some piecewise differential systemsNon-smooth differential systemLimit cycle in Melnikov higher order perturbationLienard piecewise differential systemA classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved.MINECOAGAUR grantEuropean Community grantsFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, BrazilUniv Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, BrazilUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, SpainUniv Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, BrazilMINECO: MTM2013-40998-PMINECO: MTM2016-77278-PAGAUR grant: 2014 SGR568European Community grants: FP7-PEOPLE-2012-IRSES 316338European Community grants: 318999FAPESP: 2012/18780-0FAPESP: 2013/24541-0FAPESP: 2017/03352-6Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal do ABC (UFABC)Univ Autonoma BarcelonaBuzzi, Claudio A. [UNESP]Silva Lima, Mauricio FirminoTorregrosa, Joan2018-11-26T17:49:14Z2018-11-26T17:49:14Z2018-05-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article28-47application/pdfhttp://dx.doi.org/10.1016/j.physd.2018.01.007Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018.0167-2789http://hdl.handle.net/11449/16413310.1016/j.physd.2018.01.007WOS:000430766000003WOS000430766000003.pdf66828677607174450000-0003-2037-8417Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica D-nonlinear Phenomena0,861info:eu-repo/semantics/openAccess2023-11-06T06:06:26Zoai:repositorio.unesp.br:11449/164133Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:00:08.408453Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Limit cycles via higher order perturbations for some piecewise differential systems
title Limit cycles via higher order perturbations for some piecewise differential systems
spellingShingle Limit cycles via higher order perturbations for some piecewise differential systems
Buzzi, Claudio A. [UNESP]
Non-smooth differential system
Limit cycle in Melnikov higher order perturbation
Lienard piecewise differential system
title_short Limit cycles via higher order perturbations for some piecewise differential systems
title_full Limit cycles via higher order perturbations for some piecewise differential systems
title_fullStr Limit cycles via higher order perturbations for some piecewise differential systems
title_full_unstemmed Limit cycles via higher order perturbations for some piecewise differential systems
title_sort Limit cycles via higher order perturbations for some piecewise differential systems
author Buzzi, Claudio A. [UNESP]
author_facet Buzzi, Claudio A. [UNESP]
Silva Lima, Mauricio Firmino
Torregrosa, Joan
author_role author
author2 Silva Lima, Mauricio Firmino
Torregrosa, Joan
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal do ABC (UFABC)
Univ Autonoma Barcelona
dc.contributor.author.fl_str_mv Buzzi, Claudio A. [UNESP]
Silva Lima, Mauricio Firmino
Torregrosa, Joan
dc.subject.por.fl_str_mv Non-smooth differential system
Limit cycle in Melnikov higher order perturbation
Lienard piecewise differential system
topic Non-smooth differential system
Limit cycle in Melnikov higher order perturbation
Lienard piecewise differential system
description A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T17:49:14Z
2018-11-26T17:49:14Z
2018-05-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physd.2018.01.007
Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018.
0167-2789
http://hdl.handle.net/11449/164133
10.1016/j.physd.2018.01.007
WOS:000430766000003
WOS000430766000003.pdf
6682867760717445
0000-0003-2037-8417
url http://dx.doi.org/10.1016/j.physd.2018.01.007
http://hdl.handle.net/11449/164133
identifier_str_mv Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018.
0167-2789
10.1016/j.physd.2018.01.007
WOS:000430766000003
WOS000430766000003.pdf
6682867760717445
0000-0003-2037-8417
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica D-nonlinear Phenomena
0,861
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 28-47
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128735555092480