Fresnel analysis of wave propagation in nonlinear electrodynamics

Detalhes bibliográficos
Autor(a) principal: Obukhov, Yuri N. [UNESP]
Data de Publicação: 2002
Outros Autores: Rubilar, Guillermo F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevD.66.024042
http://hdl.handle.net/11449/224295
Resumo: We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics. © 2002 The American Physical Society.
id UNSP_7002a5db864c973e536173ee60cc1cf1
oai_identifier_str oai:repositorio.unesp.br:11449/224295
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fresnel analysis of wave propagation in nonlinear electrodynamicsWe study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics. © 2002 The American Physical Society.Institute de Física Teórica UNESP, Rua Pamplona 145, 01405-900 São Paulo, SPInstitute for Theoretical Physics University of Cologne, 50923 KöLnDepartment of Theoretical Physics Moscow State University, 117234 MoscowInstitute de Física Teórica UNESP, Rua Pamplona 145, 01405-900 São Paulo, SPUniversidade Estadual Paulista (UNESP)University of CologneMoscow State UniversityObukhov, Yuri N. [UNESP]Rubilar, Guillermo F.2022-04-28T19:55:39Z2022-04-28T19:55:39Z2002-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevD.66.024042Physical Review D, v. 66, n. 2, 2002.0556-2821http://hdl.handle.net/11449/22429510.1103/PhysRevD.66.0240422-s2.0-0037101279Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Dinfo:eu-repo/semantics/openAccess2022-04-28T19:55:39Zoai:repositorio.unesp.br:11449/224295Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:44:17.549881Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fresnel analysis of wave propagation in nonlinear electrodynamics
title Fresnel analysis of wave propagation in nonlinear electrodynamics
spellingShingle Fresnel analysis of wave propagation in nonlinear electrodynamics
Obukhov, Yuri N. [UNESP]
title_short Fresnel analysis of wave propagation in nonlinear electrodynamics
title_full Fresnel analysis of wave propagation in nonlinear electrodynamics
title_fullStr Fresnel analysis of wave propagation in nonlinear electrodynamics
title_full_unstemmed Fresnel analysis of wave propagation in nonlinear electrodynamics
title_sort Fresnel analysis of wave propagation in nonlinear electrodynamics
author Obukhov, Yuri N. [UNESP]
author_facet Obukhov, Yuri N. [UNESP]
Rubilar, Guillermo F.
author_role author
author2 Rubilar, Guillermo F.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
University of Cologne
Moscow State University
dc.contributor.author.fl_str_mv Obukhov, Yuri N. [UNESP]
Rubilar, Guillermo F.
description We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics. © 2002 The American Physical Society.
publishDate 2002
dc.date.none.fl_str_mv 2002-01-01
2022-04-28T19:55:39Z
2022-04-28T19:55:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevD.66.024042
Physical Review D, v. 66, n. 2, 2002.
0556-2821
http://hdl.handle.net/11449/224295
10.1103/PhysRevD.66.024042
2-s2.0-0037101279
url http://dx.doi.org/10.1103/PhysRevD.66.024042
http://hdl.handle.net/11449/224295
identifier_str_mv Physical Review D, v. 66, n. 2, 2002.
0556-2821
10.1103/PhysRevD.66.024042
2-s2.0-0037101279
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review D
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128693753610240