Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1155/2009/149563 http://hdl.handle.net/11449/7121 |
Resumo: | We study the local codimension one, two, and three bifurcations which occur in a recently proposed Van der Pol-Duffing circuit (ADVP) with parallel resistor, which is an extension of the classical Chua's circuit with cubic nonlinearity. The ADVP system presents a very rich dynamical behavior, ranging from stable equilibrium points to periodic and even chaotic oscillations. Aiming to contribute to the understand of the complex dynamics of this new system we present an analytical study of its local bifurcations and give the corresponding bifurcation diagrams. A complete description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. Then, by studying the continuation of such periodic orbits, we numerically find a sequence of period doubling and symmetric homoclinic bifurcations which leads to the creation of strange attractors, for a given set of the parameter values. Copyright (C) 2009 Denis de Carvalho Braga et al. |
id |
UNSP_71dd6145c4ce422e6e5ef299a918b677 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/7121 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel ResistorWe study the local codimension one, two, and three bifurcations which occur in a recently proposed Van der Pol-Duffing circuit (ADVP) with parallel resistor, which is an extension of the classical Chua's circuit with cubic nonlinearity. The ADVP system presents a very rich dynamical behavior, ranging from stable equilibrium points to periodic and even chaotic oscillations. Aiming to contribute to the understand of the complex dynamics of this new system we present an analytical study of its local bifurcations and give the corresponding bifurcation diagrams. A complete description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. Then, by studying the continuation of such periodic orbits, we numerically find a sequence of period doubling and symmetric homoclinic bifurcations which leads to the creation of strange attractors, for a given set of the parameter values. Copyright (C) 2009 Denis de Carvalho Braga et al.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Pró-Reitoria de Pesquisa da UNESP (PROPe UNESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)UNESP Univ Estadual Paulista, Dept Matemat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, BrazilUniv Fed Itajuba, Inst Sistemas Eletr & Energia, BR-37500903 Itajuba, MG, BrazilUniv Fed Itajuba, Inst Ciencias Exatas, BR-37500903 Itajuba, MG, BrazilUNESP Univ Estadual Paulista, Dept Matemat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, BrazilCNPq: 473747/2006-5CNPq: 478544/2007-3Hindawi Publishing CorporationUniversidade Estadual Paulista (Unesp)Universidade Federal de Itajubá (UNIFEI)Braga, Denis de CarvalhoMello, Luis FernandoMessias, Marcelo [UNESP]2014-05-20T13:23:33Z2014-05-20T13:23:33Z2009-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article26application/pdfhttp://dx.doi.org/10.1155/2009/149563Mathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 26, 2009.1024-123Xhttp://hdl.handle.net/11449/712110.1155/2009/149563WOS:000273462500001WOS000273462500001.pdf3757225669056317Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMathematical Problems in Engineering1.145info:eu-repo/semantics/openAccess2024-06-19T14:31:49Zoai:repositorio.unesp.br:11449/7121Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:38:33.579547Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
title |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
spellingShingle |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor Braga, Denis de Carvalho |
title_short |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
title_full |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
title_fullStr |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
title_full_unstemmed |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
title_sort |
Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor |
author |
Braga, Denis de Carvalho |
author_facet |
Braga, Denis de Carvalho Mello, Luis Fernando Messias, Marcelo [UNESP] |
author_role |
author |
author2 |
Mello, Luis Fernando Messias, Marcelo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Itajubá (UNIFEI) |
dc.contributor.author.fl_str_mv |
Braga, Denis de Carvalho Mello, Luis Fernando Messias, Marcelo [UNESP] |
description |
We study the local codimension one, two, and three bifurcations which occur in a recently proposed Van der Pol-Duffing circuit (ADVP) with parallel resistor, which is an extension of the classical Chua's circuit with cubic nonlinearity. The ADVP system presents a very rich dynamical behavior, ranging from stable equilibrium points to periodic and even chaotic oscillations. Aiming to contribute to the understand of the complex dynamics of this new system we present an analytical study of its local bifurcations and give the corresponding bifurcation diagrams. A complete description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. Then, by studying the continuation of such periodic orbits, we numerically find a sequence of period doubling and symmetric homoclinic bifurcations which leads to the creation of strange attractors, for a given set of the parameter values. Copyright (C) 2009 Denis de Carvalho Braga et al. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01 2014-05-20T13:23:33Z 2014-05-20T13:23:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1155/2009/149563 Mathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 26, 2009. 1024-123X http://hdl.handle.net/11449/7121 10.1155/2009/149563 WOS:000273462500001 WOS000273462500001.pdf 3757225669056317 |
url |
http://dx.doi.org/10.1155/2009/149563 http://hdl.handle.net/11449/7121 |
identifier_str_mv |
Mathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 26, 2009. 1024-123X 10.1155/2009/149563 WOS:000273462500001 WOS000273462500001.pdf 3757225669056317 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Mathematical Problems in Engineering 1.145 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
26 application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128256770048000 |