Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor

Detalhes bibliográficos
Autor(a) principal: Braga, Denis de Carvalho
Data de Publicação: 2009
Outros Autores: Mello, Luis Fernando, Messias, Marcelo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1155/2009/149563
http://hdl.handle.net/11449/7121
Resumo: We study the local codimension one, two, and three bifurcations which occur in a recently proposed Van der Pol-Duffing circuit (ADVP) with parallel resistor, which is an extension of the classical Chua's circuit with cubic nonlinearity. The ADVP system presents a very rich dynamical behavior, ranging from stable equilibrium points to periodic and even chaotic oscillations. Aiming to contribute to the understand of the complex dynamics of this new system we present an analytical study of its local bifurcations and give the corresponding bifurcation diagrams. A complete description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. Then, by studying the continuation of such periodic orbits, we numerically find a sequence of period doubling and symmetric homoclinic bifurcations which leads to the creation of strange attractors, for a given set of the parameter values. Copyright (C) 2009 Denis de Carvalho Braga et al.
id UNSP_71dd6145c4ce422e6e5ef299a918b677
oai_identifier_str oai:repositorio.unesp.br:11449/7121
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel ResistorWe study the local codimension one, two, and three bifurcations which occur in a recently proposed Van der Pol-Duffing circuit (ADVP) with parallel resistor, which is an extension of the classical Chua's circuit with cubic nonlinearity. The ADVP system presents a very rich dynamical behavior, ranging from stable equilibrium points to periodic and even chaotic oscillations. Aiming to contribute to the understand of the complex dynamics of this new system we present an analytical study of its local bifurcations and give the corresponding bifurcation diagrams. A complete description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. Then, by studying the continuation of such periodic orbits, we numerically find a sequence of period doubling and symmetric homoclinic bifurcations which leads to the creation of strange attractors, for a given set of the parameter values. Copyright (C) 2009 Denis de Carvalho Braga et al.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Pró-Reitoria de Pesquisa da UNESP (PROPe UNESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)UNESP Univ Estadual Paulista, Dept Matemat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, BrazilUniv Fed Itajuba, Inst Sistemas Eletr & Energia, BR-37500903 Itajuba, MG, BrazilUniv Fed Itajuba, Inst Ciencias Exatas, BR-37500903 Itajuba, MG, BrazilUNESP Univ Estadual Paulista, Dept Matemat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, BrazilCNPq: 473747/2006-5CNPq: 478544/2007-3Hindawi Publishing CorporationUniversidade Estadual Paulista (Unesp)Universidade Federal de Itajubá (UNIFEI)Braga, Denis de CarvalhoMello, Luis FernandoMessias, Marcelo [UNESP]2014-05-20T13:23:33Z2014-05-20T13:23:33Z2009-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article26application/pdfhttp://dx.doi.org/10.1155/2009/149563Mathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 26, 2009.1024-123Xhttp://hdl.handle.net/11449/712110.1155/2009/149563WOS:000273462500001WOS000273462500001.pdf3757225669056317Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMathematical Problems in Engineering1.145info:eu-repo/semantics/openAccess2024-06-19T14:31:49Zoai:repositorio.unesp.br:11449/7121Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:38:33.579547Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
title Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
spellingShingle Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
Braga, Denis de Carvalho
title_short Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
title_full Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
title_fullStr Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
title_full_unstemmed Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
title_sort Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor
author Braga, Denis de Carvalho
author_facet Braga, Denis de Carvalho
Mello, Luis Fernando
Messias, Marcelo [UNESP]
author_role author
author2 Mello, Luis Fernando
Messias, Marcelo [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de Itajubá (UNIFEI)
dc.contributor.author.fl_str_mv Braga, Denis de Carvalho
Mello, Luis Fernando
Messias, Marcelo [UNESP]
description We study the local codimension one, two, and three bifurcations which occur in a recently proposed Van der Pol-Duffing circuit (ADVP) with parallel resistor, which is an extension of the classical Chua's circuit with cubic nonlinearity. The ADVP system presents a very rich dynamical behavior, ranging from stable equilibrium points to periodic and even chaotic oscillations. Aiming to contribute to the understand of the complex dynamics of this new system we present an analytical study of its local bifurcations and give the corresponding bifurcation diagrams. A complete description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. Then, by studying the continuation of such periodic orbits, we numerically find a sequence of period doubling and symmetric homoclinic bifurcations which leads to the creation of strange attractors, for a given set of the parameter values. Copyright (C) 2009 Denis de Carvalho Braga et al.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-01
2014-05-20T13:23:33Z
2014-05-20T13:23:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1155/2009/149563
Mathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 26, 2009.
1024-123X
http://hdl.handle.net/11449/7121
10.1155/2009/149563
WOS:000273462500001
WOS000273462500001.pdf
3757225669056317
url http://dx.doi.org/10.1155/2009/149563
http://hdl.handle.net/11449/7121
identifier_str_mv Mathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 26, 2009.
1024-123X
10.1155/2009/149563
WOS:000273462500001
WOS000273462500001.pdf
3757225669056317
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Mathematical Problems in Engineering
1.145
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 26
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128256770048000