Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression

Detalhes bibliográficos
Autor(a) principal: de Paula, Rômulo A. [UNESP]
Data de Publicação: 2021
Outros Autores: Marim, Lucas [UNESP], Penchel, Rafael A. [UNESP], Bustamante, Yésica R. R., Abbade, Marcelo L. F. [UNESP], Perez-Sanchez, Grethell, Aldaya, Ivan [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11082-021-03149-7
http://hdl.handle.net/11449/222197
Resumo: We propose and analyze a classifier based on logistic regression (LR) to mitigate the impact of nonlinear phase noise (NPN) caused by Kerr-induced self-phase-modulation in digital coherent systems with single-channel unrepeated links. Simulation results reveal that the proposed approach reduces the bit error ratio (BER) in a 100-km-long 16 quadrature amplitude modulation (16-QAM) system operating at 56-Gbps. Thus, the BER is reduced from 6.88 × 10−4 when using maximum likelihood to 4.27 × 10−4 after applying the LR-based classification, representing an increase of 0.36 dB in the effective Q-factor. This performance enhancement is achieved with only 624 operations per symbol, which can be easily parallelized into 16 lines of 39 operations.
id UNSP_734344806b583bdb20664e00c709a3f7
oai_identifier_str oai:repositorio.unesp.br:11449/222197
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regressionCoherent systemsMachine learningNonlinearity compensationWe propose and analyze a classifier based on logistic regression (LR) to mitigate the impact of nonlinear phase noise (NPN) caused by Kerr-induced self-phase-modulation in digital coherent systems with single-channel unrepeated links. Simulation results reveal that the proposed approach reduces the bit error ratio (BER) in a 100-km-long 16 quadrature amplitude modulation (16-QAM) system operating at 56-Gbps. Thus, the BER is reduced from 6.88 × 10−4 when using maximum likelihood to 4.27 × 10−4 after applying the LR-based classification, representing an increase of 0.36 dB in the effective Q-factor. This performance enhancement is achieved with only 624 operations per symbol, which can be easily parallelized into 16 lines of 39 operations.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Center for Advanced and Sustainable Technologies São Paulo State University (UNESP), São João da Boa VistaCPqD FoundationMetropolitan Autonomous UniversityCenter for Advanced and Sustainable Technologies São Paulo State University (UNESP), São João da Boa VistaFAPESP: 2015/24517-8FAPESP: 2018/25339-4CNPq: 311035/2018-3CNPq: 432303/2018-9Universidade Estadual Paulista (UNESP)CPqD FoundationMetropolitan Autonomous Universityde Paula, Rômulo A. [UNESP]Marim, Lucas [UNESP]Penchel, Rafael A. [UNESP]Bustamante, Yésica R. R.Abbade, Marcelo L. F. [UNESP]Perez-Sanchez, GrethellAldaya, Ivan [UNESP]2022-04-28T19:43:12Z2022-04-28T19:43:12Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s11082-021-03149-7Optical and Quantum Electronics, v. 53, n. 9, 2021.1572-817X0306-8919http://hdl.handle.net/11449/22219710.1007/s11082-021-03149-72-s2.0-85112447827Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOptical and Quantum Electronicsinfo:eu-repo/semantics/openAccess2022-04-28T19:43:12Zoai:repositorio.unesp.br:11449/222197Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:32:52.902715Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
title Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
spellingShingle Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
de Paula, Rômulo A. [UNESP]
Coherent systems
Machine learning
Nonlinearity compensation
title_short Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
title_full Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
title_fullStr Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
title_full_unstemmed Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
title_sort Mitigation of nonlinear phase noise in single-channel coherent 16-QAM systems employing logistic regression
author de Paula, Rômulo A. [UNESP]
author_facet de Paula, Rômulo A. [UNESP]
Marim, Lucas [UNESP]
Penchel, Rafael A. [UNESP]
Bustamante, Yésica R. R.
Abbade, Marcelo L. F. [UNESP]
Perez-Sanchez, Grethell
Aldaya, Ivan [UNESP]
author_role author
author2 Marim, Lucas [UNESP]
Penchel, Rafael A. [UNESP]
Bustamante, Yésica R. R.
Abbade, Marcelo L. F. [UNESP]
Perez-Sanchez, Grethell
Aldaya, Ivan [UNESP]
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
CPqD Foundation
Metropolitan Autonomous University
dc.contributor.author.fl_str_mv de Paula, Rômulo A. [UNESP]
Marim, Lucas [UNESP]
Penchel, Rafael A. [UNESP]
Bustamante, Yésica R. R.
Abbade, Marcelo L. F. [UNESP]
Perez-Sanchez, Grethell
Aldaya, Ivan [UNESP]
dc.subject.por.fl_str_mv Coherent systems
Machine learning
Nonlinearity compensation
topic Coherent systems
Machine learning
Nonlinearity compensation
description We propose and analyze a classifier based on logistic regression (LR) to mitigate the impact of nonlinear phase noise (NPN) caused by Kerr-induced self-phase-modulation in digital coherent systems with single-channel unrepeated links. Simulation results reveal that the proposed approach reduces the bit error ratio (BER) in a 100-km-long 16 quadrature amplitude modulation (16-QAM) system operating at 56-Gbps. Thus, the BER is reduced from 6.88 × 10−4 when using maximum likelihood to 4.27 × 10−4 after applying the LR-based classification, representing an increase of 0.36 dB in the effective Q-factor. This performance enhancement is achieved with only 624 operations per symbol, which can be easily parallelized into 16 lines of 39 operations.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
2022-04-28T19:43:12Z
2022-04-28T19:43:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11082-021-03149-7
Optical and Quantum Electronics, v. 53, n. 9, 2021.
1572-817X
0306-8919
http://hdl.handle.net/11449/222197
10.1007/s11082-021-03149-7
2-s2.0-85112447827
url http://dx.doi.org/10.1007/s11082-021-03149-7
http://hdl.handle.net/11449/222197
identifier_str_mv Optical and Quantum Electronics, v. 53, n. 9, 2021.
1572-817X
0306-8919
10.1007/s11082-021-03149-7
2-s2.0-85112447827
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Optical and Quantum Electronics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129218447409152