Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s10883-020-09491-5 http://hdl.handle.net/11449/201869 |
Resumo: | We perform a global dynamical analysis of a modified Nosé-Hoover oscillator, obtained as the perturbation of an integrable differential system. Using this new approach for studying such an oscillator, in the integrable cases, we give a complete description of the solutions in the phase space, including the dynamics at infinity via the Poincaré compactification. Then using the averaging theory, we prove analytically the existence of a linearly stable periodic orbit which bifurcates from one of the infinite periodic orbits which exist in the integrable cases. Moreover, by a detailed numerical study, we show the existence of nested invariant tori around the bifurcating periodic orbit. Finally, starting with the integrable cases and increasing the parameter values, we show that chaotic dynamics may occur, due to the break of such an invariant tori, leading to the creation of chaotic seas surrounding regular regions in the phase space. |
id |
UNSP_73b83add416841aea3353df6c3aaa074 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201869 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover OscillatorAveraging theoryChaotic dynamicsFirst integralInvariant toriNosé-Hoover oscillatorPeriodic orbitWe perform a global dynamical analysis of a modified Nosé-Hoover oscillator, obtained as the perturbation of an integrable differential system. Using this new approach for studying such an oscillator, in the integrable cases, we give a complete description of the solutions in the phase space, including the dynamics at infinity via the Poincaré compactification. Then using the averaging theory, we prove analytically the existence of a linearly stable periodic orbit which bifurcates from one of the infinite periodic orbits which exist in the integrable cases. Moreover, by a detailed numerical study, we show the existence of nested invariant tori around the bifurcating periodic orbit. Finally, starting with the integrable cases and increasing the parameter values, we show that chaotic dynamics may occur, due to the break of such an invariant tori, leading to the creation of chaotic seas surrounding regular regions in the phase space.Departament de Matemàtiques Universitat Autònoma de Barcelona (UAB), BellaterraDepartamento de Matemática e Computação Universidade Estadual Paulista (UNESP)Departamento Acadêmico de Matemática Universidade Tecnológica Federal do Paraná UTFPRDepartamento de Matemática e Computação Universidade Estadual Paulista (UNESP)Universitat Autònoma de Barcelona (UAB)Universidade Estadual Paulista (Unesp)UTFPRLlibre, JaumeMessias, Marcelo [UNESP]Reinol, Alisson C.2020-12-12T02:44:00Z2020-12-12T02:44:00Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s10883-020-09491-5Journal of Dynamical and Control Systems.1573-86981079-2724http://hdl.handle.net/11449/20186910.1007/s10883-020-09491-52-s2.0-85086408356Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Dynamical and Control Systemsinfo:eu-repo/semantics/openAccess2024-06-19T14:31:52Zoai:repositorio.unesp.br:11449/201869Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:45:43.615087Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
title |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
spellingShingle |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator Llibre, Jaume Averaging theory Chaotic dynamics First integral Invariant tori Nosé-Hoover oscillator Periodic orbit |
title_short |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
title_full |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
title_fullStr |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
title_full_unstemmed |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
title_sort |
Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator |
author |
Llibre, Jaume |
author_facet |
Llibre, Jaume Messias, Marcelo [UNESP] Reinol, Alisson C. |
author_role |
author |
author2 |
Messias, Marcelo [UNESP] Reinol, Alisson C. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universitat Autònoma de Barcelona (UAB) Universidade Estadual Paulista (Unesp) UTFPR |
dc.contributor.author.fl_str_mv |
Llibre, Jaume Messias, Marcelo [UNESP] Reinol, Alisson C. |
dc.subject.por.fl_str_mv |
Averaging theory Chaotic dynamics First integral Invariant tori Nosé-Hoover oscillator Periodic orbit |
topic |
Averaging theory Chaotic dynamics First integral Invariant tori Nosé-Hoover oscillator Periodic orbit |
description |
We perform a global dynamical analysis of a modified Nosé-Hoover oscillator, obtained as the perturbation of an integrable differential system. Using this new approach for studying such an oscillator, in the integrable cases, we give a complete description of the solutions in the phase space, including the dynamics at infinity via the Poincaré compactification. Then using the averaging theory, we prove analytically the existence of a linearly stable periodic orbit which bifurcates from one of the infinite periodic orbits which exist in the integrable cases. Moreover, by a detailed numerical study, we show the existence of nested invariant tori around the bifurcating periodic orbit. Finally, starting with the integrable cases and increasing the parameter values, we show that chaotic dynamics may occur, due to the break of such an invariant tori, leading to the creation of chaotic seas surrounding regular regions in the phase space. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:44:00Z 2020-12-12T02:44:00Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s10883-020-09491-5 Journal of Dynamical and Control Systems. 1573-8698 1079-2724 http://hdl.handle.net/11449/201869 10.1007/s10883-020-09491-5 2-s2.0-85086408356 |
url |
http://dx.doi.org/10.1007/s10883-020-09491-5 http://hdl.handle.net/11449/201869 |
identifier_str_mv |
Journal of Dynamical and Control Systems. 1573-8698 1079-2724 10.1007/s10883-020-09491-5 2-s2.0-85086408356 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Dynamical and Control Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128222332715008 |