CHSMST+: An algorithm for spatial clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PDCAT.2016.081 http://hdl.handle.net/11449/178996 |
Resumo: | Spatial clustering has been widely studied due to its application in several areas. However, the algorithms of such technique still need to overcome several challenges to achieve satisfactory results on a timely basis. This work presents an algorithm for spatial clustering based on CHSMST, which allows: data clustering considering both distance and similarity, enabling to correlate spatial and nonspatial data, user interaction is not necessary, and use of multithreading technique to improve the performance. The algorithm was tested ia a real database of health area. |
id |
UNSP_74e334823c7630d963183f54bc985d78 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/178996 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
CHSMST+: An algorithm for spatial clusteringCHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree)Hyper Surface Classification (HSC)Minimum Spanning Tree (MST)Spatial ClusteringSpatial Data MiningSpatial clustering has been widely studied due to its application in several areas. However, the algorithms of such technique still need to overcome several challenges to achieve satisfactory results on a timely basis. This work presents an algorithm for spatial clustering based on CHSMST, which allows: data clustering considering both distance and similarity, enabling to correlate spatial and nonspatial data, user interaction is not necessary, and use of multithreading technique to improve the performance. The algorithm was tested ia a real database of health area.Department of Computer Science and Statistics São Paulo State University (UNESP)Department of Computer Science and Statistics Federal University of São Carlos (UFSCar)Department of Computer Science and Statistics São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Valencio, Carlos Roberto [UNESP]Medeiros, Camila Alves [UNESP]Neves, Leandro Alves [UNESP]Zafalon, Geraldo Francisco Donega [UNESP]De Souza, Rogeria Cristiane Gratao [UNESP]Colombini, Angelo Cesar2018-12-11T17:33:04Z2018-12-11T17:33:04Z2017-06-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject352-357http://dx.doi.org/10.1109/PDCAT.2016.081Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 352-357.http://hdl.handle.net/11449/17899610.1109/PDCAT.2016.0812-s2.0-85021874602464481225387583221390538148793120000-0002-9325-3159Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengParallel and Distributed Computing, Applications and Technologies, PDCAT Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T21:47:03Zoai:repositorio.unesp.br:11449/178996Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:29.939966Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
CHSMST+: An algorithm for spatial clustering |
title |
CHSMST+: An algorithm for spatial clustering |
spellingShingle |
CHSMST+: An algorithm for spatial clustering Valencio, Carlos Roberto [UNESP] CHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree) Hyper Surface Classification (HSC) Minimum Spanning Tree (MST) Spatial Clustering Spatial Data Mining |
title_short |
CHSMST+: An algorithm for spatial clustering |
title_full |
CHSMST+: An algorithm for spatial clustering |
title_fullStr |
CHSMST+: An algorithm for spatial clustering |
title_full_unstemmed |
CHSMST+: An algorithm for spatial clustering |
title_sort |
CHSMST+: An algorithm for spatial clustering |
author |
Valencio, Carlos Roberto [UNESP] |
author_facet |
Valencio, Carlos Roberto [UNESP] Medeiros, Camila Alves [UNESP] Neves, Leandro Alves [UNESP] Zafalon, Geraldo Francisco Donega [UNESP] De Souza, Rogeria Cristiane Gratao [UNESP] Colombini, Angelo Cesar |
author_role |
author |
author2 |
Medeiros, Camila Alves [UNESP] Neves, Leandro Alves [UNESP] Zafalon, Geraldo Francisco Donega [UNESP] De Souza, Rogeria Cristiane Gratao [UNESP] Colombini, Angelo Cesar |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Carlos (UFSCar) |
dc.contributor.author.fl_str_mv |
Valencio, Carlos Roberto [UNESP] Medeiros, Camila Alves [UNESP] Neves, Leandro Alves [UNESP] Zafalon, Geraldo Francisco Donega [UNESP] De Souza, Rogeria Cristiane Gratao [UNESP] Colombini, Angelo Cesar |
dc.subject.por.fl_str_mv |
CHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree) Hyper Surface Classification (HSC) Minimum Spanning Tree (MST) Spatial Clustering Spatial Data Mining |
topic |
CHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree) Hyper Surface Classification (HSC) Minimum Spanning Tree (MST) Spatial Clustering Spatial Data Mining |
description |
Spatial clustering has been widely studied due to its application in several areas. However, the algorithms of such technique still need to overcome several challenges to achieve satisfactory results on a timely basis. This work presents an algorithm for spatial clustering based on CHSMST, which allows: data clustering considering both distance and similarity, enabling to correlate spatial and nonspatial data, user interaction is not necessary, and use of multithreading technique to improve the performance. The algorithm was tested ia a real database of health area. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-07 2018-12-11T17:33:04Z 2018-12-11T17:33:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PDCAT.2016.081 Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 352-357. http://hdl.handle.net/11449/178996 10.1109/PDCAT.2016.081 2-s2.0-85021874602 4644812253875832 2139053814879312 0000-0002-9325-3159 |
url |
http://dx.doi.org/10.1109/PDCAT.2016.081 http://hdl.handle.net/11449/178996 |
identifier_str_mv |
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 352-357. 10.1109/PDCAT.2016.081 2-s2.0-85021874602 4644812253875832 2139053814879312 0000-0002-9325-3159 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
352-357 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128666651066368 |