CHSMST+: An algorithm for spatial clustering

Detalhes bibliográficos
Autor(a) principal: Valencio, Carlos Roberto [UNESP]
Data de Publicação: 2017
Outros Autores: Medeiros, Camila Alves [UNESP], Neves, Leandro Alves [UNESP], Zafalon, Geraldo Francisco Donega [UNESP], De Souza, Rogeria Cristiane Gratao [UNESP], Colombini, Angelo Cesar
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PDCAT.2016.081
http://hdl.handle.net/11449/178996
Resumo: Spatial clustering has been widely studied due to its application in several areas. However, the algorithms of such technique still need to overcome several challenges to achieve satisfactory results on a timely basis. This work presents an algorithm for spatial clustering based on CHSMST, which allows: data clustering considering both distance and similarity, enabling to correlate spatial and nonspatial data, user interaction is not necessary, and use of multithreading technique to improve the performance. The algorithm was tested ia a real database of health area.
id UNSP_74e334823c7630d963183f54bc985d78
oai_identifier_str oai:repositorio.unesp.br:11449/178996
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling CHSMST+: An algorithm for spatial clusteringCHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree)Hyper Surface Classification (HSC)Minimum Spanning Tree (MST)Spatial ClusteringSpatial Data MiningSpatial clustering has been widely studied due to its application in several areas. However, the algorithms of such technique still need to overcome several challenges to achieve satisfactory results on a timely basis. This work presents an algorithm for spatial clustering based on CHSMST, which allows: data clustering considering both distance and similarity, enabling to correlate spatial and nonspatial data, user interaction is not necessary, and use of multithreading technique to improve the performance. The algorithm was tested ia a real database of health area.Department of Computer Science and Statistics São Paulo State University (UNESP)Department of Computer Science and Statistics Federal University of São Carlos (UFSCar)Department of Computer Science and Statistics São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Valencio, Carlos Roberto [UNESP]Medeiros, Camila Alves [UNESP]Neves, Leandro Alves [UNESP]Zafalon, Geraldo Francisco Donega [UNESP]De Souza, Rogeria Cristiane Gratao [UNESP]Colombini, Angelo Cesar2018-12-11T17:33:04Z2018-12-11T17:33:04Z2017-06-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject352-357http://dx.doi.org/10.1109/PDCAT.2016.081Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 352-357.http://hdl.handle.net/11449/17899610.1109/PDCAT.2016.0812-s2.0-85021874602464481225387583221390538148793120000-0002-9325-3159Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengParallel and Distributed Computing, Applications and Technologies, PDCAT Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T21:47:03Zoai:repositorio.unesp.br:11449/178996Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:29.939966Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv CHSMST+: An algorithm for spatial clustering
title CHSMST+: An algorithm for spatial clustering
spellingShingle CHSMST+: An algorithm for spatial clustering
Valencio, Carlos Roberto [UNESP]
CHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree)
Hyper Surface Classification (HSC)
Minimum Spanning Tree (MST)
Spatial Clustering
Spatial Data Mining
title_short CHSMST+: An algorithm for spatial clustering
title_full CHSMST+: An algorithm for spatial clustering
title_fullStr CHSMST+: An algorithm for spatial clustering
title_full_unstemmed CHSMST+: An algorithm for spatial clustering
title_sort CHSMST+: An algorithm for spatial clustering
author Valencio, Carlos Roberto [UNESP]
author_facet Valencio, Carlos Roberto [UNESP]
Medeiros, Camila Alves [UNESP]
Neves, Leandro Alves [UNESP]
Zafalon, Geraldo Francisco Donega [UNESP]
De Souza, Rogeria Cristiane Gratao [UNESP]
Colombini, Angelo Cesar
author_role author
author2 Medeiros, Camila Alves [UNESP]
Neves, Leandro Alves [UNESP]
Zafalon, Geraldo Francisco Donega [UNESP]
De Souza, Rogeria Cristiane Gratao [UNESP]
Colombini, Angelo Cesar
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Valencio, Carlos Roberto [UNESP]
Medeiros, Camila Alves [UNESP]
Neves, Leandro Alves [UNESP]
Zafalon, Geraldo Francisco Donega [UNESP]
De Souza, Rogeria Cristiane Gratao [UNESP]
Colombini, Angelo Cesar
dc.subject.por.fl_str_mv CHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree)
Hyper Surface Classification (HSC)
Minimum Spanning Tree (MST)
Spatial Clustering
Spatial Data Mining
topic CHSMST (Clustering based on Hyper Surface and Minimum Spanning Tree)
Hyper Surface Classification (HSC)
Minimum Spanning Tree (MST)
Spatial Clustering
Spatial Data Mining
description Spatial clustering has been widely studied due to its application in several areas. However, the algorithms of such technique still need to overcome several challenges to achieve satisfactory results on a timely basis. This work presents an algorithm for spatial clustering based on CHSMST, which allows: data clustering considering both distance and similarity, enabling to correlate spatial and nonspatial data, user interaction is not necessary, and use of multithreading technique to improve the performance. The algorithm was tested ia a real database of health area.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-07
2018-12-11T17:33:04Z
2018-12-11T17:33:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PDCAT.2016.081
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 352-357.
http://hdl.handle.net/11449/178996
10.1109/PDCAT.2016.081
2-s2.0-85021874602
4644812253875832
2139053814879312
0000-0002-9325-3159
url http://dx.doi.org/10.1109/PDCAT.2016.081
http://hdl.handle.net/11449/178996
identifier_str_mv Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 352-357.
10.1109/PDCAT.2016.081
2-s2.0-85021874602
4644812253875832
2139053814879312
0000-0002-9325-3159
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 352-357
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128666651066368