A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines

Detalhes bibliográficos
Autor(a) principal: Santos, Gabriel Bertacco dos
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: https://hdl.handle.net/11449/250827
Resumo: Wind energy has emerged as an attractive alternative to the current fossil fuel‐based energy mix. In this context, small‐scale H‐Darrieus vertical‐axis wind turbine (VAWT) combine interesting characteristics for harvesting wind energy in urban‐like conditions. Still, H‐Darrieus turbines are reported to experience relatively low aerodynamic efficiency, especially when compared with horizontal‐axis wind turbines (HAWTs) of equal scale. Even though several devices have been proposed to increase the aerodynamic performance H‐Darrieus turbines, the literature seems to overlook the potential of specifically designed airfoil shapes and blade geometries. In part, this is a direct consequence of the cost of optimization studies for H‐Darrieus turbines. So far, available alternatives rely on limiting either the design exploration or the search algorithm capabilities, which is surely a suboptimal approach for such a complex problem. To overcome the limitations of traditional approaches, we propose here a data‐driven analysis framework that mostly gravitates toward reducing the total computational cost for the optimization of H‐Darrieus turbines. For that, we use computational fluid dynamics (CFD) simulations along with sensitivity analysis, metamodeling, and optimization strategies. Additionally, airfoil shapes are parameterized using a deep generative adversarial network (GAN). The results show that the proposed analysis framework considerably reduces the number of model evaluations required for a complete analysis and optimization. The airfoil parameterization allows expanding the bounds of the latent design space to easily explore novel airfoil designs. The optimized geometries can increase the aerodynamic performance of the turbine by up to 20 % when compared with the NACA 0015 and the NACA 0021—two common airfoil shapes used in H‐Darrieus turbines. Interestingly, the optimized geometries were found outside the original bounds of the design space, further confirming that the search for novel airfoil designs may open the way for better aerodynamic performance of small‐scale H‐Darrieus turbines. To this end, data‐driven strategies may be an interesting approach to indicate new perspective for future development.
id UNSP_751de7b48cdde052ea0f46012858fd30
oai_identifier_str oai:repositorio.unesp.br:11449/250827
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbinesUma abordagem baseada em dados para novas perspectivas no desenvolvimento de turbinas H-Darrieus de pequena escalaVertical‐axis wind turbineComputational fluid dynamicsSensitivity analysisAerodynamic optimizationGenerative adversarial networkTurbinas de eixo verticalDinâmica dos fluidos computacionalAnálise de sensibilidadeOtimização aerodinâmicaRede neural generativaWind energy has emerged as an attractive alternative to the current fossil fuel‐based energy mix. In this context, small‐scale H‐Darrieus vertical‐axis wind turbine (VAWT) combine interesting characteristics for harvesting wind energy in urban‐like conditions. Still, H‐Darrieus turbines are reported to experience relatively low aerodynamic efficiency, especially when compared with horizontal‐axis wind turbines (HAWTs) of equal scale. Even though several devices have been proposed to increase the aerodynamic performance H‐Darrieus turbines, the literature seems to overlook the potential of specifically designed airfoil shapes and blade geometries. In part, this is a direct consequence of the cost of optimization studies for H‐Darrieus turbines. So far, available alternatives rely on limiting either the design exploration or the search algorithm capabilities, which is surely a suboptimal approach for such a complex problem. To overcome the limitations of traditional approaches, we propose here a data‐driven analysis framework that mostly gravitates toward reducing the total computational cost for the optimization of H‐Darrieus turbines. For that, we use computational fluid dynamics (CFD) simulations along with sensitivity analysis, metamodeling, and optimization strategies. Additionally, airfoil shapes are parameterized using a deep generative adversarial network (GAN). The results show that the proposed analysis framework considerably reduces the number of model evaluations required for a complete analysis and optimization. The airfoil parameterization allows expanding the bounds of the latent design space to easily explore novel airfoil designs. The optimized geometries can increase the aerodynamic performance of the turbine by up to 20 % when compared with the NACA 0015 and the NACA 0021—two common airfoil shapes used in H‐Darrieus turbines. Interestingly, the optimized geometries were found outside the original bounds of the design space, further confirming that the search for novel airfoil designs may open the way for better aerodynamic performance of small‐scale H‐Darrieus turbines. To this end, data‐driven strategies may be an interesting approach to indicate new perspective for future development.A energia eólica emergiu como uma alternativa interessante ao uso de combustíveis fósseis. Neste contexto, as turbinas H‐Darrieus de pequena escala combinam características interessantes para a geração de energia no ambiente urbano. Entretanto, turbinas H‐Darrieus ainda apresentam uma eficiência aerodinâmica relativamente baixa quando comparadas às tradicionais turbinas de eixo horizontal de mesma escala. Diferentes dispositivos foram propostos para aumentar a eficiência das turbinas H‐Darrieus. No entanto, a atual literatura parece ignorar o potencial de geometrias especialmente desenvolvidas para estas turbinas. Em parte, isto ocorre devido ao custo de estudos de otimização em turbinas H‐Darrieus. As atuais alternativas limitam ou a exploração de novas geometrias, ou as capacidades do algoritmo de busca, o que, no fundo, representa uma alternativa subótima para um problema tão complexo. Visando solucionar as deficiências das alternativas tradicionais, propomos aqui uma metodologia de análise baseada em dados, que busca reduzir o custo de estudos de otimização para turbinas H‐Darrieus. Para isto, utilizamos dinâmica dos fluidos computacional combinada com análise de sensibilidade, metamodelagem, e otimização. A geometria dos aerofólios foi parametrizada através de uma rede neural generativa. Os resultados mostram que a metodologia de análise reduz consideravelmente o número necessário de avaliações do modelo numérico para uma análise completa de otimização. O método de parametrização permite expandir os limites do espaço de experimentação para explorar novas geometrias. As geometrias otimizadas podem aumentar o desempenho da turbina em até 20 % em relação ao NACA 0015 e ao NACA0021 — dois modelos normalmente usados em turbinas H‐Darrieus. Interessante o bastante, as geometrias otimizadas foram encontradas fora dos limites originais do espaço de experimentação, indicando que a busca por novas geometrias pode abrir caminhos para o desenvolvimento de turbinas H‐Darrieus mais eficientes. Para isto, estratégias baseadas em dados podem ser uma alternativa interessante para indicar novas perspectivas para desenvolvimentos futuros.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 001Universidade Estadual Paulista (Unesp)Salviano, Leandro Oliveira [UNESP]Santos, Gabriel Bertacco dos2023-10-03T14:59:00Z2023-10-03T14:59:00Z2023-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSANTOS, Gabriel Bertacco dos. A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines. 2023. 199 f. Tese (Doutorado em Engenharia Mecânica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2023.https://hdl.handle.net/11449/250827enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-10-25T06:12:58Zoai:repositorio.unesp.br:11449/250827Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:58:34.610729Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
Uma abordagem baseada em dados para novas perspectivas no desenvolvimento de turbinas H-Darrieus de pequena escala
title A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
spellingShingle A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
Santos, Gabriel Bertacco dos
Vertical‐axis wind turbine
Computational fluid dynamics
Sensitivity analysis
Aerodynamic optimization
Generative adversarial network
Turbinas de eixo vertical
Dinâmica dos fluidos computacional
Análise de sensibilidade
Otimização aerodinâmica
Rede neural generativa
title_short A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
title_full A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
title_fullStr A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
title_full_unstemmed A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
title_sort A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines
author Santos, Gabriel Bertacco dos
author_facet Santos, Gabriel Bertacco dos
author_role author
dc.contributor.none.fl_str_mv Salviano, Leandro Oliveira [UNESP]
dc.contributor.author.fl_str_mv Santos, Gabriel Bertacco dos
dc.subject.por.fl_str_mv Vertical‐axis wind turbine
Computational fluid dynamics
Sensitivity analysis
Aerodynamic optimization
Generative adversarial network
Turbinas de eixo vertical
Dinâmica dos fluidos computacional
Análise de sensibilidade
Otimização aerodinâmica
Rede neural generativa
topic Vertical‐axis wind turbine
Computational fluid dynamics
Sensitivity analysis
Aerodynamic optimization
Generative adversarial network
Turbinas de eixo vertical
Dinâmica dos fluidos computacional
Análise de sensibilidade
Otimização aerodinâmica
Rede neural generativa
description Wind energy has emerged as an attractive alternative to the current fossil fuel‐based energy mix. In this context, small‐scale H‐Darrieus vertical‐axis wind turbine (VAWT) combine interesting characteristics for harvesting wind energy in urban‐like conditions. Still, H‐Darrieus turbines are reported to experience relatively low aerodynamic efficiency, especially when compared with horizontal‐axis wind turbines (HAWTs) of equal scale. Even though several devices have been proposed to increase the aerodynamic performance H‐Darrieus turbines, the literature seems to overlook the potential of specifically designed airfoil shapes and blade geometries. In part, this is a direct consequence of the cost of optimization studies for H‐Darrieus turbines. So far, available alternatives rely on limiting either the design exploration or the search algorithm capabilities, which is surely a suboptimal approach for such a complex problem. To overcome the limitations of traditional approaches, we propose here a data‐driven analysis framework that mostly gravitates toward reducing the total computational cost for the optimization of H‐Darrieus turbines. For that, we use computational fluid dynamics (CFD) simulations along with sensitivity analysis, metamodeling, and optimization strategies. Additionally, airfoil shapes are parameterized using a deep generative adversarial network (GAN). The results show that the proposed analysis framework considerably reduces the number of model evaluations required for a complete analysis and optimization. The airfoil parameterization allows expanding the bounds of the latent design space to easily explore novel airfoil designs. The optimized geometries can increase the aerodynamic performance of the turbine by up to 20 % when compared with the NACA 0015 and the NACA 0021—two common airfoil shapes used in H‐Darrieus turbines. Interestingly, the optimized geometries were found outside the original bounds of the design space, further confirming that the search for novel airfoil designs may open the way for better aerodynamic performance of small‐scale H‐Darrieus turbines. To this end, data‐driven strategies may be an interesting approach to indicate new perspective for future development.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-03T14:59:00Z
2023-10-03T14:59:00Z
2023-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Gabriel Bertacco dos. A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines. 2023. 199 f. Tese (Doutorado em Engenharia Mecânica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2023.
https://hdl.handle.net/11449/250827
identifier_str_mv SANTOS, Gabriel Bertacco dos. A data‐driven approach for new perspectives on the development of small‐scale H‐Darrieus turbines. 2023. 199 f. Tese (Doutorado em Engenharia Mecânica) – Faculdade de Engenharia, Universidade Estadual Paulista - Unesp, Ilha Solteira, 2023.
url https://hdl.handle.net/11449/250827
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128588061343744