An efficient neural approach to economic load dispatch in power systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PESS.2001.970255 http://hdl.handle.net/11449/8906 |
Resumo: | A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach. |
id |
UNSP_754711bd3cfd05af0f43adbfc88523ad |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/8906 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An efficient neural approach to economic load dispatch in power systemseconomic dispatchartificial neural networksHopfield modelnonlinear optimizationA neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.UNESP, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilUNESP, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilIEEEUniversidade Estadual Paulista (Unesp)da Silva, I. N.Nepomuceno, L.2014-05-20T13:27:14Z2014-05-20T13:27:14Z2001-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1269-1274http://dx.doi.org/10.1109/PESS.2001.9702552001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001.http://hdl.handle.net/11449/890610.1109/PESS.2001.970255WOS:0001764067002752013445187247691Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-06-28T13:34:42Zoai:repositorio.unesp.br:11449/8906Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:45:40.076015Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An efficient neural approach to economic load dispatch in power systems |
title |
An efficient neural approach to economic load dispatch in power systems |
spellingShingle |
An efficient neural approach to economic load dispatch in power systems da Silva, I. N. economic dispatch artificial neural networks Hopfield model nonlinear optimization |
title_short |
An efficient neural approach to economic load dispatch in power systems |
title_full |
An efficient neural approach to economic load dispatch in power systems |
title_fullStr |
An efficient neural approach to economic load dispatch in power systems |
title_full_unstemmed |
An efficient neural approach to economic load dispatch in power systems |
title_sort |
An efficient neural approach to economic load dispatch in power systems |
author |
da Silva, I. N. |
author_facet |
da Silva, I. N. Nepomuceno, L. |
author_role |
author |
author2 |
Nepomuceno, L. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
da Silva, I. N. Nepomuceno, L. |
dc.subject.por.fl_str_mv |
economic dispatch artificial neural networks Hopfield model nonlinear optimization |
topic |
economic dispatch artificial neural networks Hopfield model nonlinear optimization |
description |
A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-01-01 2014-05-20T13:27:14Z 2014-05-20T13:27:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PESS.2001.970255 2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001. http://hdl.handle.net/11449/8906 10.1109/PESS.2001.970255 WOS:000176406700275 2013445187247691 |
url |
http://dx.doi.org/10.1109/PESS.2001.970255 http://hdl.handle.net/11449/8906 |
identifier_str_mv |
2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001. 10.1109/PESS.2001.970255 WOS:000176406700275 2013445187247691 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1269-1274 |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129114995949568 |