An efficient neural approach to economic load dispatch in power systems

Detalhes bibliográficos
Autor(a) principal: da Silva, I. N.
Data de Publicação: 2001
Outros Autores: Nepomuceno, L.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PESS.2001.970255
http://hdl.handle.net/11449/8906
Resumo: A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
id UNSP_754711bd3cfd05af0f43adbfc88523ad
oai_identifier_str oai:repositorio.unesp.br:11449/8906
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An efficient neural approach to economic load dispatch in power systemseconomic dispatchartificial neural networksHopfield modelnonlinear optimizationA neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.UNESP, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilUNESP, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilIEEEUniversidade Estadual Paulista (Unesp)da Silva, I. N.Nepomuceno, L.2014-05-20T13:27:14Z2014-05-20T13:27:14Z2001-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1269-1274http://dx.doi.org/10.1109/PESS.2001.9702552001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001.http://hdl.handle.net/11449/890610.1109/PESS.2001.970255WOS:0001764067002752013445187247691Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-06-28T13:34:42Zoai:repositorio.unesp.br:11449/8906Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:45:40.076015Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An efficient neural approach to economic load dispatch in power systems
title An efficient neural approach to economic load dispatch in power systems
spellingShingle An efficient neural approach to economic load dispatch in power systems
da Silva, I. N.
economic dispatch
artificial neural networks
Hopfield model
nonlinear optimization
title_short An efficient neural approach to economic load dispatch in power systems
title_full An efficient neural approach to economic load dispatch in power systems
title_fullStr An efficient neural approach to economic load dispatch in power systems
title_full_unstemmed An efficient neural approach to economic load dispatch in power systems
title_sort An efficient neural approach to economic load dispatch in power systems
author da Silva, I. N.
author_facet da Silva, I. N.
Nepomuceno, L.
author_role author
author2 Nepomuceno, L.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv da Silva, I. N.
Nepomuceno, L.
dc.subject.por.fl_str_mv economic dispatch
artificial neural networks
Hopfield model
nonlinear optimization
topic economic dispatch
artificial neural networks
Hopfield model
nonlinear optimization
description A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
2014-05-20T13:27:14Z
2014-05-20T13:27:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PESS.2001.970255
2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001.
http://hdl.handle.net/11449/8906
10.1109/PESS.2001.970255
WOS:000176406700275
2013445187247691
url http://dx.doi.org/10.1109/PESS.2001.970255
http://hdl.handle.net/11449/8906
identifier_str_mv 2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001.
10.1109/PESS.2001.970255
WOS:000176406700275
2013445187247691
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1269-1274
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129114995949568