A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks

Detalhes bibliográficos
Autor(a) principal: Vilela, Douglas W.F.L. [UNESP]
Data de Publicação: 2014
Outros Autores: Ferreira, Ed'Wilson T. [UNESP], Shinoda, Ailton Akira [UNESP], De Souza Araujo, Nelcileno V., De Oliveira, Ruy, Nascimento, Valtemir E.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ColComCon.2014.6860434
http://hdl.handle.net/11449/227845
Resumo: Internet access by wireless networks has grownconsiderably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paperproposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achievedgreat results, which showed the effectiveness of our proposed approach. © 2014 IEEE.
id UNSP_77430274450053f5fbcbacb0b304c3c1
oai_identifier_str oai:repositorio.unesp.br:11449/227845
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networksBayes NetDatasetneural networkspattern classificationsecurityInternet access by wireless networks has grownconsiderably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paperproposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achievedgreat results, which showed the effectiveness of our proposed approach. © 2014 IEEE.Departamento de Engenharia Elétrica, Universidade Estadual Paulista Júlio de Mesquita Filho, Ilha SolteiraInstituto de Computação, Universidade Federal de Mato Grosso, CuiabáDepartamento de área de Informática, Instituto Federal de Mato Grosso, CuiabáDepartamento de Engenharia Elétrica, Universidade Estadual Paulista Júlio de Mesquita Filho, Ilha SolteiraUniversidade Estadual Paulista (UNESP)Instituto de Computação, Universidade Federal de Mato GrossoVilela, Douglas W.F.L. [UNESP]Ferreira, Ed'Wilson T. [UNESP]Shinoda, Ailton Akira [UNESP]De Souza Araujo, Nelcileno V.De Oliveira, RuyNascimento, Valtemir E.2022-04-29T07:20:26Z2022-04-29T07:20:26Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ColComCon.2014.68604342014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings.http://hdl.handle.net/11449/22784510.1109/ColComCon.2014.68604342-s2.0-84905841276Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:20Zoai:repositorio.unesp.br:11449/227845Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:51:18.111536Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
title A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
spellingShingle A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
Vilela, Douglas W.F.L. [UNESP]
Bayes Net
Dataset
neural networks
pattern classification
security
title_short A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
title_full A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
title_fullStr A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
title_full_unstemmed A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
title_sort A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
author Vilela, Douglas W.F.L. [UNESP]
author_facet Vilela, Douglas W.F.L. [UNESP]
Ferreira, Ed'Wilson T. [UNESP]
Shinoda, Ailton Akira [UNESP]
De Souza Araujo, Nelcileno V.
De Oliveira, Ruy
Nascimento, Valtemir E.
author_role author
author2 Ferreira, Ed'Wilson T. [UNESP]
Shinoda, Ailton Akira [UNESP]
De Souza Araujo, Nelcileno V.
De Oliveira, Ruy
Nascimento, Valtemir E.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Instituto de Computação, Universidade Federal de Mato Grosso
dc.contributor.author.fl_str_mv Vilela, Douglas W.F.L. [UNESP]
Ferreira, Ed'Wilson T. [UNESP]
Shinoda, Ailton Akira [UNESP]
De Souza Araujo, Nelcileno V.
De Oliveira, Ruy
Nascimento, Valtemir E.
dc.subject.por.fl_str_mv Bayes Net
Dataset
neural networks
pattern classification
security
topic Bayes Net
Dataset
neural networks
pattern classification
security
description Internet access by wireless networks has grownconsiderably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paperproposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achievedgreat results, which showed the effectiveness of our proposed approach. © 2014 IEEE.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2022-04-29T07:20:26Z
2022-04-29T07:20:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ColComCon.2014.6860434
2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings.
http://hdl.handle.net/11449/227845
10.1109/ColComCon.2014.6860434
2-s2.0-84905841276
url http://dx.doi.org/10.1109/ColComCon.2014.6860434
http://hdl.handle.net/11449/227845
identifier_str_mv 2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings.
10.1109/ColComCon.2014.6860434
2-s2.0-84905841276
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128425501655040