A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ColComCon.2014.6860434 http://hdl.handle.net/11449/227845 |
Resumo: | Internet access by wireless networks has grownconsiderably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paperproposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achievedgreat results, which showed the effectiveness of our proposed approach. © 2014 IEEE. |
id |
UNSP_77430274450053f5fbcbacb0b304c3c1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/227845 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networksBayes NetDatasetneural networkspattern classificationsecurityInternet access by wireless networks has grownconsiderably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paperproposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achievedgreat results, which showed the effectiveness of our proposed approach. © 2014 IEEE.Departamento de Engenharia Elétrica, Universidade Estadual Paulista Júlio de Mesquita Filho, Ilha SolteiraInstituto de Computação, Universidade Federal de Mato Grosso, CuiabáDepartamento de área de Informática, Instituto Federal de Mato Grosso, CuiabáDepartamento de Engenharia Elétrica, Universidade Estadual Paulista Júlio de Mesquita Filho, Ilha SolteiraUniversidade Estadual Paulista (UNESP)Instituto de Computação, Universidade Federal de Mato GrossoVilela, Douglas W.F.L. [UNESP]Ferreira, Ed'Wilson T. [UNESP]Shinoda, Ailton Akira [UNESP]De Souza Araujo, Nelcileno V.De Oliveira, RuyNascimento, Valtemir E.2022-04-29T07:20:26Z2022-04-29T07:20:26Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ColComCon.2014.68604342014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings.http://hdl.handle.net/11449/22784510.1109/ColComCon.2014.68604342-s2.0-84905841276Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:20Zoai:repositorio.unesp.br:11449/227845Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:51:18.111536Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
title |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
spellingShingle |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks Vilela, Douglas W.F.L. [UNESP] Bayes Net Dataset neural networks pattern classification security |
title_short |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
title_full |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
title_fullStr |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
title_full_unstemmed |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
title_sort |
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks |
author |
Vilela, Douglas W.F.L. [UNESP] |
author_facet |
Vilela, Douglas W.F.L. [UNESP] Ferreira, Ed'Wilson T. [UNESP] Shinoda, Ailton Akira [UNESP] De Souza Araujo, Nelcileno V. De Oliveira, Ruy Nascimento, Valtemir E. |
author_role |
author |
author2 |
Ferreira, Ed'Wilson T. [UNESP] Shinoda, Ailton Akira [UNESP] De Souza Araujo, Nelcileno V. De Oliveira, Ruy Nascimento, Valtemir E. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Instituto de Computação, Universidade Federal de Mato Grosso |
dc.contributor.author.fl_str_mv |
Vilela, Douglas W.F.L. [UNESP] Ferreira, Ed'Wilson T. [UNESP] Shinoda, Ailton Akira [UNESP] De Souza Araujo, Nelcileno V. De Oliveira, Ruy Nascimento, Valtemir E. |
dc.subject.por.fl_str_mv |
Bayes Net Dataset neural networks pattern classification security |
topic |
Bayes Net Dataset neural networks pattern classification security |
description |
Internet access by wireless networks has grownconsiderably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paperproposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achievedgreat results, which showed the effectiveness of our proposed approach. © 2014 IEEE. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2022-04-29T07:20:26Z 2022-04-29T07:20:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ColComCon.2014.6860434 2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings. http://hdl.handle.net/11449/227845 10.1109/ColComCon.2014.6860434 2-s2.0-84905841276 |
url |
http://dx.doi.org/10.1109/ColComCon.2014.6860434 http://hdl.handle.net/11449/227845 |
identifier_str_mv |
2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings. 10.1109/ColComCon.2014.6860434 2-s2.0-84905841276 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2014 IEEE Colombian Conference on Communications and Computing, COLCOM 2014 - Conference Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128425501655040 |