Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system

Detalhes bibliográficos
Autor(a) principal: Santos, L. B.T.
Data de Publicação: 2022
Outros Autores: Sousa-Silva, P. A. [UNESP], Terra, M. O., Mani, Karthik V., de Almeida, A. K., Sanchez, D. M., Prado, A. F.B.A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.asr.2022.08.035
http://hdl.handle.net/11449/245975
Resumo: In this paper, optimal solutions are investigated for a transfer from a parking orbit around the Moon to a halo orbit around L2 of the Earth-Moon system. The transfers are executed by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. In this regard, an optimization problem is proposed where both the orbital characteristics of a parking solution around the Moon (its Keplerian elements) and the characteristics of a transfer trajectory (guided by the stable manifold of the arrival Halo orbit) are considered as variables. The problem involved in the single maneuver transfer is solved using a nonlinear programming method (NLP), which aims to minimize the cost of ΔV within the framework of the Earth-Moon system using the circular restricted three-body problem. The feasibility of this kind of transfer for a Cubesat is shown in this paper through results with low ΔV combined with suitable times of flight.
id UNSP_774ad15ad9e02609ef24bde3bf39fe0e
oai_identifier_str oai:repositorio.unesp.br:11449/245975
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Optimal transfers from Moon to L2 halo orbit of the Earth-Moon systemMission designMoon to L2 Halo orbit transferOptimal transfersRestricted three-body problemStable manifoldIn this paper, optimal solutions are investigated for a transfer from a parking orbit around the Moon to a halo orbit around L2 of the Earth-Moon system. The transfers are executed by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. In this regard, an optimization problem is proposed where both the orbital characteristics of a parking solution around the Moon (its Keplerian elements) and the characteristics of a transfer trajectory (guided by the stable manifold of the arrival Halo orbit) are considered as variables. The problem involved in the single maneuver transfer is solved using a nonlinear programming method (NLP), which aims to minimize the cost of ΔV within the framework of the Earth-Moon system using the circular restricted three-body problem. The feasibility of this kind of transfer for a Cubesat is shown in this paper through results with low ΔV combined with suitable times of flight.Division of Space Mechanics and Control National Institute for Space Research INPESão Paulo State University UNESPTechnological Institute of Aeronautics ITAGomSpaceInstituto de Telecomunicações, 3810-193 AveiroPostgraduate Division - National Institute for Space Research (INPE) São PauloAcademy of Engineering RUDN University, Miklukho-Maklaya street 6São Paulo State University UNESPINPEUniversidade Estadual Paulista (UNESP)ITAGomSpaceInstituto de TelecomunicaçõesSão PauloRUDN UniversitySantos, L. B.T.Sousa-Silva, P. A. [UNESP]Terra, M. O.Mani, Karthik V.de Almeida, A. K.Sanchez, D. M.Prado, A. F.B.A.2023-07-29T12:28:25Z2023-07-29T12:28:25Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3362-3372http://dx.doi.org/10.1016/j.asr.2022.08.035Advances in Space Research, v. 70, n. 11, p. 3362-3372, 2022.1879-19480273-1177http://hdl.handle.net/11449/24597510.1016/j.asr.2022.08.0352-s2.0-85138768125Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Space Researchinfo:eu-repo/semantics/openAccess2023-07-29T12:28:25Zoai:repositorio.unesp.br:11449/245975Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:32:15.286478Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
title Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
spellingShingle Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
Santos, L. B.T.
Mission design
Moon to L2 Halo orbit transfer
Optimal transfers
Restricted three-body problem
Stable manifold
title_short Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
title_full Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
title_fullStr Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
title_full_unstemmed Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
title_sort Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
author Santos, L. B.T.
author_facet Santos, L. B.T.
Sousa-Silva, P. A. [UNESP]
Terra, M. O.
Mani, Karthik V.
de Almeida, A. K.
Sanchez, D. M.
Prado, A. F.B.A.
author_role author
author2 Sousa-Silva, P. A. [UNESP]
Terra, M. O.
Mani, Karthik V.
de Almeida, A. K.
Sanchez, D. M.
Prado, A. F.B.A.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv INPE
Universidade Estadual Paulista (UNESP)
ITA
GomSpace
Instituto de Telecomunicações
São Paulo
RUDN University
dc.contributor.author.fl_str_mv Santos, L. B.T.
Sousa-Silva, P. A. [UNESP]
Terra, M. O.
Mani, Karthik V.
de Almeida, A. K.
Sanchez, D. M.
Prado, A. F.B.A.
dc.subject.por.fl_str_mv Mission design
Moon to L2 Halo orbit transfer
Optimal transfers
Restricted three-body problem
Stable manifold
topic Mission design
Moon to L2 Halo orbit transfer
Optimal transfers
Restricted three-body problem
Stable manifold
description In this paper, optimal solutions are investigated for a transfer from a parking orbit around the Moon to a halo orbit around L2 of the Earth-Moon system. The transfers are executed by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. In this regard, an optimization problem is proposed where both the orbital characteristics of a parking solution around the Moon (its Keplerian elements) and the characteristics of a transfer trajectory (guided by the stable manifold of the arrival Halo orbit) are considered as variables. The problem involved in the single maneuver transfer is solved using a nonlinear programming method (NLP), which aims to minimize the cost of ΔV within the framework of the Earth-Moon system using the circular restricted three-body problem. The feasibility of this kind of transfer for a Cubesat is shown in this paper through results with low ΔV combined with suitable times of flight.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-01
2023-07-29T12:28:25Z
2023-07-29T12:28:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.asr.2022.08.035
Advances in Space Research, v. 70, n. 11, p. 3362-3372, 2022.
1879-1948
0273-1177
http://hdl.handle.net/11449/245975
10.1016/j.asr.2022.08.035
2-s2.0-85138768125
url http://dx.doi.org/10.1016/j.asr.2022.08.035
http://hdl.handle.net/11449/245975
identifier_str_mv Advances in Space Research, v. 70, n. 11, p. 3362-3372, 2022.
1879-1948
0273-1177
10.1016/j.asr.2022.08.035
2-s2.0-85138768125
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Advances in Space Research
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3362-3372
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128244103249920