Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.asr.2022.08.035 http://hdl.handle.net/11449/245975 |
Resumo: | In this paper, optimal solutions are investigated for a transfer from a parking orbit around the Moon to a halo orbit around L2 of the Earth-Moon system. The transfers are executed by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. In this regard, an optimization problem is proposed where both the orbital characteristics of a parking solution around the Moon (its Keplerian elements) and the characteristics of a transfer trajectory (guided by the stable manifold of the arrival Halo orbit) are considered as variables. The problem involved in the single maneuver transfer is solved using a nonlinear programming method (NLP), which aims to minimize the cost of ΔV within the framework of the Earth-Moon system using the circular restricted three-body problem. The feasibility of this kind of transfer for a Cubesat is shown in this paper through results with low ΔV combined with suitable times of flight. |
id |
UNSP_774ad15ad9e02609ef24bde3bf39fe0e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245975 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon systemMission designMoon to L2 Halo orbit transferOptimal transfersRestricted three-body problemStable manifoldIn this paper, optimal solutions are investigated for a transfer from a parking orbit around the Moon to a halo orbit around L2 of the Earth-Moon system. The transfers are executed by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. In this regard, an optimization problem is proposed where both the orbital characteristics of a parking solution around the Moon (its Keplerian elements) and the characteristics of a transfer trajectory (guided by the stable manifold of the arrival Halo orbit) are considered as variables. The problem involved in the single maneuver transfer is solved using a nonlinear programming method (NLP), which aims to minimize the cost of ΔV within the framework of the Earth-Moon system using the circular restricted three-body problem. The feasibility of this kind of transfer for a Cubesat is shown in this paper through results with low ΔV combined with suitable times of flight.Division of Space Mechanics and Control National Institute for Space Research INPESão Paulo State University UNESPTechnological Institute of Aeronautics ITAGomSpaceInstituto de Telecomunicações, 3810-193 AveiroPostgraduate Division - National Institute for Space Research (INPE) São PauloAcademy of Engineering RUDN University, Miklukho-Maklaya street 6São Paulo State University UNESPINPEUniversidade Estadual Paulista (UNESP)ITAGomSpaceInstituto de TelecomunicaçõesSão PauloRUDN UniversitySantos, L. B.T.Sousa-Silva, P. A. [UNESP]Terra, M. O.Mani, Karthik V.de Almeida, A. K.Sanchez, D. M.Prado, A. F.B.A.2023-07-29T12:28:25Z2023-07-29T12:28:25Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3362-3372http://dx.doi.org/10.1016/j.asr.2022.08.035Advances in Space Research, v. 70, n. 11, p. 3362-3372, 2022.1879-19480273-1177http://hdl.handle.net/11449/24597510.1016/j.asr.2022.08.0352-s2.0-85138768125Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Space Researchinfo:eu-repo/semantics/openAccess2023-07-29T12:28:25Zoai:repositorio.unesp.br:11449/245975Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:32:15.286478Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
title |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
spellingShingle |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system Santos, L. B.T. Mission design Moon to L2 Halo orbit transfer Optimal transfers Restricted three-body problem Stable manifold |
title_short |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
title_full |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
title_fullStr |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
title_full_unstemmed |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
title_sort |
Optimal transfers from Moon to L2 halo orbit of the Earth-Moon system |
author |
Santos, L. B.T. |
author_facet |
Santos, L. B.T. Sousa-Silva, P. A. [UNESP] Terra, M. O. Mani, Karthik V. de Almeida, A. K. Sanchez, D. M. Prado, A. F.B.A. |
author_role |
author |
author2 |
Sousa-Silva, P. A. [UNESP] Terra, M. O. Mani, Karthik V. de Almeida, A. K. Sanchez, D. M. Prado, A. F.B.A. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
INPE Universidade Estadual Paulista (UNESP) ITA GomSpace Instituto de Telecomunicações São Paulo RUDN University |
dc.contributor.author.fl_str_mv |
Santos, L. B.T. Sousa-Silva, P. A. [UNESP] Terra, M. O. Mani, Karthik V. de Almeida, A. K. Sanchez, D. M. Prado, A. F.B.A. |
dc.subject.por.fl_str_mv |
Mission design Moon to L2 Halo orbit transfer Optimal transfers Restricted three-body problem Stable manifold |
topic |
Mission design Moon to L2 Halo orbit transfer Optimal transfers Restricted three-body problem Stable manifold |
description |
In this paper, optimal solutions are investigated for a transfer from a parking orbit around the Moon to a halo orbit around L2 of the Earth-Moon system. The transfers are executed by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. In this regard, an optimization problem is proposed where both the orbital characteristics of a parking solution around the Moon (its Keplerian elements) and the characteristics of a transfer trajectory (guided by the stable manifold of the arrival Halo orbit) are considered as variables. The problem involved in the single maneuver transfer is solved using a nonlinear programming method (NLP), which aims to minimize the cost of ΔV within the framework of the Earth-Moon system using the circular restricted three-body problem. The feasibility of this kind of transfer for a Cubesat is shown in this paper through results with low ΔV combined with suitable times of flight. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-01 2023-07-29T12:28:25Z 2023-07-29T12:28:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.asr.2022.08.035 Advances in Space Research, v. 70, n. 11, p. 3362-3372, 2022. 1879-1948 0273-1177 http://hdl.handle.net/11449/245975 10.1016/j.asr.2022.08.035 2-s2.0-85138768125 |
url |
http://dx.doi.org/10.1016/j.asr.2022.08.035 http://hdl.handle.net/11449/245975 |
identifier_str_mv |
Advances in Space Research, v. 70, n. 11, p. 3362-3372, 2022. 1879-1948 0273-1177 10.1016/j.asr.2022.08.035 2-s2.0-85138768125 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advances in Space Research |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3362-3372 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128244103249920 |