Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories

Detalhes bibliográficos
Autor(a) principal: Weber, Hans Ingo
Data de Publicação: 2003
Outros Autores: Balthazar, José Manoel [UNESP], Belato, Débora [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51
http://hdl.handle.net/11449/67588
Resumo: This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
id UNSP_77726df9d52d21916cacfb72c4373142
oai_identifier_str oai:repositorio.unesp.br:11449/67588
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Behavioural Analysis of a Nonlinear Mechanical System Using Transient TrajectoriesBifurcationNonlinear DynamicsPhase Portrait GeometryStabilityPhase potraitBifurcation (mathematics)DampingDifferential equationsMathematical modelsPolynomialsSystem stabilityNonlinear systemsThis work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.Pont. Univ. Catol. do Rio de Janeiro Depto. de Engenharia Mecânica, Rue Marquês de S. Vicente 225, 22453-900 Rio de JaneiroUniversidade Estadual Paulista UNESP/Rio Claro Inst. de Geocie./Cie. Exatas, Rua 10, 2527, B. Santana, 13500-230 Rio ClaroUniversidade Estadual Paulista UNESP/Rio Claro Inst. de Geocie./Cie. Exatas, Rua 10, 2527, B. Santana, 13500-230 Rio ClaroPontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)Universidade Estadual Paulista (Unesp)Weber, Hans IngoBalthazar, José Manoel [UNESP]Belato, Débora [UNESP]2014-05-27T11:21:00Z2014-05-27T11:21:00Z2003-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject51-58http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51Materials Science Forum, v. 440-441, p. 51-58.0255-5476http://hdl.handle.net/11449/6758810.4028/www.scientific.net/MSF.440-441.51WOS:0001885941000072-s2.0-0344927093Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Science Forum0,180info:eu-repo/semantics/openAccess2021-10-23T21:41:36Zoai:repositorio.unesp.br:11449/67588Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:19:56.188848Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
title Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
spellingShingle Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
Weber, Hans Ingo
Bifurcation
Nonlinear Dynamics
Phase Portrait Geometry
Stability
Phase potrait
Bifurcation (mathematics)
Damping
Differential equations
Mathematical models
Polynomials
System stability
Nonlinear systems
title_short Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
title_full Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
title_fullStr Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
title_full_unstemmed Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
title_sort Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
author Weber, Hans Ingo
author_facet Weber, Hans Ingo
Balthazar, José Manoel [UNESP]
Belato, Débora [UNESP]
author_role author
author2 Balthazar, José Manoel [UNESP]
Belato, Débora [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Weber, Hans Ingo
Balthazar, José Manoel [UNESP]
Belato, Débora [UNESP]
dc.subject.por.fl_str_mv Bifurcation
Nonlinear Dynamics
Phase Portrait Geometry
Stability
Phase potrait
Bifurcation (mathematics)
Damping
Differential equations
Mathematical models
Polynomials
System stability
Nonlinear systems
topic Bifurcation
Nonlinear Dynamics
Phase Portrait Geometry
Stability
Phase potrait
Bifurcation (mathematics)
Damping
Differential equations
Mathematical models
Polynomials
System stability
Nonlinear systems
description This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
publishDate 2003
dc.date.none.fl_str_mv 2003-12-08
2014-05-27T11:21:00Z
2014-05-27T11:21:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51
Materials Science Forum, v. 440-441, p. 51-58.
0255-5476
http://hdl.handle.net/11449/67588
10.4028/www.scientific.net/MSF.440-441.51
WOS:000188594100007
2-s2.0-0344927093
url http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51
http://hdl.handle.net/11449/67588
identifier_str_mv Materials Science Forum, v. 440-441, p. 51-58.
0255-5476
10.4028/www.scientific.net/MSF.440-441.51
WOS:000188594100007
2-s2.0-0344927093
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Science Forum
0,180
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 51-58
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128634528989184