Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51 http://hdl.handle.net/11449/67588 |
Resumo: | This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point. |
id |
UNSP_77726df9d52d21916cacfb72c4373142 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/67588 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient TrajectoriesBifurcationNonlinear DynamicsPhase Portrait GeometryStabilityPhase potraitBifurcation (mathematics)DampingDifferential equationsMathematical modelsPolynomialsSystem stabilityNonlinear systemsThis work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.Pont. Univ. Catol. do Rio de Janeiro Depto. de Engenharia Mecânica, Rue Marquês de S. Vicente 225, 22453-900 Rio de JaneiroUniversidade Estadual Paulista UNESP/Rio Claro Inst. de Geocie./Cie. Exatas, Rua 10, 2527, B. Santana, 13500-230 Rio ClaroUniversidade Estadual Paulista UNESP/Rio Claro Inst. de Geocie./Cie. Exatas, Rua 10, 2527, B. Santana, 13500-230 Rio ClaroPontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)Universidade Estadual Paulista (Unesp)Weber, Hans IngoBalthazar, José Manoel [UNESP]Belato, Débora [UNESP]2014-05-27T11:21:00Z2014-05-27T11:21:00Z2003-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject51-58http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51Materials Science Forum, v. 440-441, p. 51-58.0255-5476http://hdl.handle.net/11449/6758810.4028/www.scientific.net/MSF.440-441.51WOS:0001885941000072-s2.0-0344927093Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Science Forum0,180info:eu-repo/semantics/openAccess2021-10-23T21:41:36Zoai:repositorio.unesp.br:11449/67588Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:19:56.188848Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
title |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
spellingShingle |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories Weber, Hans Ingo Bifurcation Nonlinear Dynamics Phase Portrait Geometry Stability Phase potrait Bifurcation (mathematics) Damping Differential equations Mathematical models Polynomials System stability Nonlinear systems |
title_short |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
title_full |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
title_fullStr |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
title_full_unstemmed |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
title_sort |
Behavioural Analysis of a Nonlinear Mechanical System Using Transient Trajectories |
author |
Weber, Hans Ingo |
author_facet |
Weber, Hans Ingo Balthazar, José Manoel [UNESP] Belato, Débora [UNESP] |
author_role |
author |
author2 |
Balthazar, José Manoel [UNESP] Belato, Débora [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Weber, Hans Ingo Balthazar, José Manoel [UNESP] Belato, Débora [UNESP] |
dc.subject.por.fl_str_mv |
Bifurcation Nonlinear Dynamics Phase Portrait Geometry Stability Phase potrait Bifurcation (mathematics) Damping Differential equations Mathematical models Polynomials System stability Nonlinear systems |
topic |
Bifurcation Nonlinear Dynamics Phase Portrait Geometry Stability Phase potrait Bifurcation (mathematics) Damping Differential equations Mathematical models Polynomials System stability Nonlinear systems |
description |
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12-08 2014-05-27T11:21:00Z 2014-05-27T11:21:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51 Materials Science Forum, v. 440-441, p. 51-58. 0255-5476 http://hdl.handle.net/11449/67588 10.4028/www.scientific.net/MSF.440-441.51 WOS:000188594100007 2-s2.0-0344927093 |
url |
http://dx.doi.org/10.4028/www.scientific.net/MSF.440-441.51 http://hdl.handle.net/11449/67588 |
identifier_str_mv |
Materials Science Forum, v. 440-441, p. 51-58. 0255-5476 10.4028/www.scientific.net/MSF.440-441.51 WOS:000188594100007 2-s2.0-0344927093 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Materials Science Forum 0,180 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
51-58 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128634528989184 |