Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet

Detalhes bibliográficos
Autor(a) principal: Rocha, Marco Aurélio
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/236721
Resumo: O motor de indução trifásico (MIT) é amplamente empregado em aplicações industriais para o acionamento de diversos tipos de cargas. Caso haja qualquer tipo de interrupção indesejada causada por falhas elétricas e mecânicas neste tipo de máquina, poderá haver prejuízos financeiros e produtivos diversos. Com isso, técnicas de monitoramento não invasivas vêm ganhando cada vez mais destaque no cenário industrial e acadêmico. Essas técnicas utilizam sensores que obtém informações físicas sobre a operação da máquina, tais como vibração, corrente e emissão acústica. A análise desses sinais se destacam como ferramentas tradicionais para a obtenção de características operacionais do motor de indução trifásico e diagnóstico de falhas. Dentre as falhas elétricas, o desequilíbrio de tensão (DT), bem como o curto entre espiras (ITSC, do inglês Inter-Turn Short-Circuit) de curta duração são falhas frequentes no MIT e que podem afetar o desempenho da máquina, gerando paradas inesperadas. Portanto, o objetivo deste trabalho é a proposição de técnicas de diagnóstico de falhas DT e ITSC utilizando sensores de corrente de efeito Hall, sensor MEMS e sensores piezoelétricos. Deste modo, o diagnóstico proposto permite a detecção da falha, a identificação da fase elétrica afetada e a classificação da magnitude da falta. Para isso, foram desenvolvidas duas técnicas de processamento baseadas no envelope do sinal analítico proveniente da Transformada Hilbert e na energia do sinal dos coeficientes de aproximação e detalhe da Transformada Wavelet Discreta (TWD). Por fim, verificou-se qual a influência que a variação do carregamento tem sobre as técnicas propostas para cada um dos três sensores utilizados. Os resultados demonstraram que tanto o sensor de corrente quanto o sensor piezoelétrico foram sensíveis para o diagnóstico das falhas elétricas ITSC e DT. No entanto, verificou-se que o sensor MEMS não apresentou resultados promissores para o diagnóstico completo de falhas elétricas levando em consideração todos os níveis de carregamento aplicados. Por fim, o principal resultado é o desempenho do sensores PZT juntamente com a TWD em comparação ao sensor de corrente, uma vez que o sensor acústico apresenta custo muito reduzido e mede indiretamente a variável afetada pela falha.
id UNSP_77b4faf97031e132ac3d13a75d702ed8
oai_identifier_str oai:repositorio.unesp.br:11449/236721
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada WaveletIdentification and classification of inter-turn short-circuit and voltage unbalance in three-phase induction motors using corrent, acoustic emission and vibration sensors with hilbert transform and wavelet transformTensão desequilibradaCurto entre espirasTransformada HilbertTransformada WaveletMotor de iduçãoUnbalanced voltagesInter-turn short-circuit faultHilbert transformWavelet transformInduction motorO motor de indução trifásico (MIT) é amplamente empregado em aplicações industriais para o acionamento de diversos tipos de cargas. Caso haja qualquer tipo de interrupção indesejada causada por falhas elétricas e mecânicas neste tipo de máquina, poderá haver prejuízos financeiros e produtivos diversos. Com isso, técnicas de monitoramento não invasivas vêm ganhando cada vez mais destaque no cenário industrial e acadêmico. Essas técnicas utilizam sensores que obtém informações físicas sobre a operação da máquina, tais como vibração, corrente e emissão acústica. A análise desses sinais se destacam como ferramentas tradicionais para a obtenção de características operacionais do motor de indução trifásico e diagnóstico de falhas. Dentre as falhas elétricas, o desequilíbrio de tensão (DT), bem como o curto entre espiras (ITSC, do inglês Inter-Turn Short-Circuit) de curta duração são falhas frequentes no MIT e que podem afetar o desempenho da máquina, gerando paradas inesperadas. Portanto, o objetivo deste trabalho é a proposição de técnicas de diagnóstico de falhas DT e ITSC utilizando sensores de corrente de efeito Hall, sensor MEMS e sensores piezoelétricos. Deste modo, o diagnóstico proposto permite a detecção da falha, a identificação da fase elétrica afetada e a classificação da magnitude da falta. Para isso, foram desenvolvidas duas técnicas de processamento baseadas no envelope do sinal analítico proveniente da Transformada Hilbert e na energia do sinal dos coeficientes de aproximação e detalhe da Transformada Wavelet Discreta (TWD). Por fim, verificou-se qual a influência que a variação do carregamento tem sobre as técnicas propostas para cada um dos três sensores utilizados. Os resultados demonstraram que tanto o sensor de corrente quanto o sensor piezoelétrico foram sensíveis para o diagnóstico das falhas elétricas ITSC e DT. No entanto, verificou-se que o sensor MEMS não apresentou resultados promissores para o diagnóstico completo de falhas elétricas levando em consideração todos os níveis de carregamento aplicados. Por fim, o principal resultado é o desempenho do sensores PZT juntamente com a TWD em comparação ao sensor de corrente, uma vez que o sensor acústico apresenta custo muito reduzido e mede indiretamente a variável afetada pela falha.The three-phase induction motor (TIM) is widely used in industrial applications to drive various types of loads. If there is any kind of unexpected interruption caused by electrical and mechanical failures in this type of machine, there may be several financial and productive losses. Therefore, non-invasive monitoring techniques have been gaining more and more prominence in the industrial and academic scenario. These techniques use sensors that obtain physical information about machine operation, such as vibration, current, and acoustic emissions. The analysis of these signals stand out as traditional tools for obtaining operational characteristics of the three-phase induction motor and fault diagnosis. Among the electrical faults, voltage unbalance (VU), as well as the short duration inter-turn short circuit (ITSC) are frequent faults in the MIT and can affect the performance of the machine, generating unexpected stops. Thus, the objective of this work is the proposition of VU and ITSC fault diagnosis techniques using Hall effect current sensors, MEMS sensor and piezoelectric sensors. In this way, the proposed diagnostics allow the detection of the fault, the identification of the affected electrical phase and the classification of the fault magnitude. For this, two processing techniques were developed based on the envelope of the analytical signal originating from the Hilbert Transform and the signal energy of the approximation and detail coefficients of the Discrete Wavelet Transform (TWD). Finally, it was verified what influence the loading variation has on the proposed techniques for each of the three sensors used. The results showed that both the current sensor and the piezoelectric sensor were sensitive for the diagnosis of ITSC and DT electrical faults. However, it was found that the MEMS sensor did not show promising results for the complete diagnosis of electrical faults considering all applied loading levels. Finally, the main result is the performance of the PZT sensor combined with the TWD compared to the current sensor, since the acoustic sensor has very low cost and indirectly measures the variable affected by the fault.Universidade Estadual Paulista (Unesp)Andreoli, André Luiz [UNESP]Universidade Estadual Paulista (Unesp)Rocha, Marco Aurélio2022-09-26T16:17:53Z2022-09-26T16:17:53Z2022-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/23672133004056087P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T19:22:09Zoai:repositorio.unesp.br:11449/236721Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:34:02.890530Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
Identification and classification of inter-turn short-circuit and voltage unbalance in three-phase induction motors using corrent, acoustic emission and vibration sensors with hilbert transform and wavelet transform
title Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
spellingShingle Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
Rocha, Marco Aurélio
Tensão desequilibrada
Curto entre espiras
Transformada Hilbert
Transformada Wavelet
Motor de idução
Unbalanced voltages
Inter-turn short-circuit fault
Hilbert transform
Wavelet transform
Induction motor
title_short Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
title_full Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
title_fullStr Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
title_full_unstemmed Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
title_sort Identificação e classificação de curto entre espiras e desbalanço de tensão em motores de indução trifásicos utilizando sensores de corrente, emissão acústica e vibração com emprego de transformada Hilbert e transformada Wavelet
author Rocha, Marco Aurélio
author_facet Rocha, Marco Aurélio
author_role author
dc.contributor.none.fl_str_mv Andreoli, André Luiz [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rocha, Marco Aurélio
dc.subject.por.fl_str_mv Tensão desequilibrada
Curto entre espiras
Transformada Hilbert
Transformada Wavelet
Motor de idução
Unbalanced voltages
Inter-turn short-circuit fault
Hilbert transform
Wavelet transform
Induction motor
topic Tensão desequilibrada
Curto entre espiras
Transformada Hilbert
Transformada Wavelet
Motor de idução
Unbalanced voltages
Inter-turn short-circuit fault
Hilbert transform
Wavelet transform
Induction motor
description O motor de indução trifásico (MIT) é amplamente empregado em aplicações industriais para o acionamento de diversos tipos de cargas. Caso haja qualquer tipo de interrupção indesejada causada por falhas elétricas e mecânicas neste tipo de máquina, poderá haver prejuízos financeiros e produtivos diversos. Com isso, técnicas de monitoramento não invasivas vêm ganhando cada vez mais destaque no cenário industrial e acadêmico. Essas técnicas utilizam sensores que obtém informações físicas sobre a operação da máquina, tais como vibração, corrente e emissão acústica. A análise desses sinais se destacam como ferramentas tradicionais para a obtenção de características operacionais do motor de indução trifásico e diagnóstico de falhas. Dentre as falhas elétricas, o desequilíbrio de tensão (DT), bem como o curto entre espiras (ITSC, do inglês Inter-Turn Short-Circuit) de curta duração são falhas frequentes no MIT e que podem afetar o desempenho da máquina, gerando paradas inesperadas. Portanto, o objetivo deste trabalho é a proposição de técnicas de diagnóstico de falhas DT e ITSC utilizando sensores de corrente de efeito Hall, sensor MEMS e sensores piezoelétricos. Deste modo, o diagnóstico proposto permite a detecção da falha, a identificação da fase elétrica afetada e a classificação da magnitude da falta. Para isso, foram desenvolvidas duas técnicas de processamento baseadas no envelope do sinal analítico proveniente da Transformada Hilbert e na energia do sinal dos coeficientes de aproximação e detalhe da Transformada Wavelet Discreta (TWD). Por fim, verificou-se qual a influência que a variação do carregamento tem sobre as técnicas propostas para cada um dos três sensores utilizados. Os resultados demonstraram que tanto o sensor de corrente quanto o sensor piezoelétrico foram sensíveis para o diagnóstico das falhas elétricas ITSC e DT. No entanto, verificou-se que o sensor MEMS não apresentou resultados promissores para o diagnóstico completo de falhas elétricas levando em consideração todos os níveis de carregamento aplicados. Por fim, o principal resultado é o desempenho do sensores PZT juntamente com a TWD em comparação ao sensor de corrente, uma vez que o sensor acústico apresenta custo muito reduzido e mede indiretamente a variável afetada pela falha.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-26T16:17:53Z
2022-09-26T16:17:53Z
2022-08-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/236721
33004056087P2
url http://hdl.handle.net/11449/236721
identifier_str_mv 33004056087P2
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128671415795712