Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement

Detalhes bibliográficos
Autor(a) principal: Siqueira, Alana Helena Cara [UNESP]
Data de Publicação: 2023
Outros Autores: Gimenes, Marcela [UNESP], Manzoli, Osvaldo Luís [UNESP], Rodrigues, Eduardo Alexandre [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/S1983-41952023000300010
http://hdl.handle.net/11449/244938
Resumo: The use of construction waste as aggregate in the production of concrete is becoming a more frequent alternative due to the advantages associated with the sustainability aspect. Results obtained in experimental tests with recycled aggregate concrete suggest that mechanical properties such as elastic modulus, compressive, tensile and flexural strength tend to reduce with partial or total replacement of natural aggregate by recycled one. On the other hand, the use of steel fiber reinforcement can minimize the reduction of these properties, since the fibers tend to improve the material strength and ductility. This work proposes a numerical approach, seeking to better predict and understand the structural mechanical behaviors and failure patterns of reinforced recycled aggregate concrete slabs with and without steel fiber. Based on the finite element method, an appropriated constitutive damage model is employed to represent the nonlinear behavior of the conventional/recycled concrete, while an elastic-perfectly plastic model is used to describe the mechanical behavior of the reinforcements. To couple the independent FE meshes and incorporate the mutual interaction between the different components, rigid and non-rigid coupling technique is used to represent the perfect adherence or the bond-slip behavior. Seven concrete slabs were numerically analyzed either with different percentages of recycled aggregate replacement (0, 50 and 100%) or steel fibers content (0.0, 0.5 and 1.0%) and the results were compared with the experimental ones. The results showed that the applied methodology is capable of simulating with good accuracy the punching shear failure mechanism of the slabs. It was observed that the punching ultimate load decreased with increase of recycled aggregate content, as well as that the steel fiber addition can minimize the negative effects of recycled aggregate employment.
id UNSP_78b3f54b8dc77d34a94491eb3fc4cc50
oai_identifier_str oai:repositorio.unesp.br:11449/244938
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcementSimulação numérica de ruptura por punção em lajes de concreto com agregado reciclado com reforço de fibra de açorecycled aggregatesteel fiberpunching failurefinite elementconstitutive modelsagregado recicladofibras de açofalha por punçãoelementos finitosmodelos constitutivosThe use of construction waste as aggregate in the production of concrete is becoming a more frequent alternative due to the advantages associated with the sustainability aspect. Results obtained in experimental tests with recycled aggregate concrete suggest that mechanical properties such as elastic modulus, compressive, tensile and flexural strength tend to reduce with partial or total replacement of natural aggregate by recycled one. On the other hand, the use of steel fiber reinforcement can minimize the reduction of these properties, since the fibers tend to improve the material strength and ductility. This work proposes a numerical approach, seeking to better predict and understand the structural mechanical behaviors and failure patterns of reinforced recycled aggregate concrete slabs with and without steel fiber. Based on the finite element method, an appropriated constitutive damage model is employed to represent the nonlinear behavior of the conventional/recycled concrete, while an elastic-perfectly plastic model is used to describe the mechanical behavior of the reinforcements. To couple the independent FE meshes and incorporate the mutual interaction between the different components, rigid and non-rigid coupling technique is used to represent the perfect adherence or the bond-slip behavior. Seven concrete slabs were numerically analyzed either with different percentages of recycled aggregate replacement (0, 50 and 100%) or steel fibers content (0.0, 0.5 and 1.0%) and the results were compared with the experimental ones. The results showed that the applied methodology is capable of simulating with good accuracy the punching shear failure mechanism of the slabs. It was observed that the punching ultimate load decreased with increase of recycled aggregate content, as well as that the steel fiber addition can minimize the negative effects of recycled aggregate employment.A utilização de resíduos da construção civil como agregado na produção de concreto vem se tornando uma alternativa cada vez mais frequente devido às vantagens associadas ao aspecto da sustentabilidade. Resultados obtidos em ensaios experimentais com concreto de agregado reciclado sugerem que propriedades mecânicas como módulo de elasticidade, resistência à compressão, tração e flexão tendem a diminuir com a substituição parcial ou total do agregado natural pelo reciclado. Por outro lado, a utilização de reforço de fibras de aço pode minimizar a redução dessas propriedades, uma vez que as fibras tendem a melhorar a resistência e a ductilidade do material. Este trabalho propõe uma abordagem numérica, buscando melhor prever e entender os comportamentos mecânicos estruturais e os modos de falha de lajes de concreto com agregado reciclado armado com e sem fibra de aço. Com base no método dos elementos finitos, um modelo constitutivo de dano apropriado é empregado para representar o comportamento não linear do concreto convencional/reciclado, enquanto que um modelo elástico-perfeitamente plástico é usado para descrever o comportamento mecânico das armaduras. Para acoplar as malhas de EF independentes e incorporar a interação mútua entre os diferentes componentes, a técnica de acoplamento rígido e não rígido é usada para representar a aderência perfeita ou o comportamento de perda de aderência (bond-slip). Sete lajes de concreto foram analisadas numericamente com diferentes porcentagens de substituição de agregado reciclado (0, 50 e 100%) ou teores de fibras de aço (0,0; 0,5 e 1,0%) e os resultados foram comparados com os experimentais. Os resultados mostraram que a metodologia aplicada é capaz de simular com boa precisão o mecanismo de ruptura por punção das lajes. Observou-se que a capacidade de carga à punção diminuiu com o aumento do teor de agregado reciclado, assim como que a adição de fibra de aço pode minimizar os efeitos negativos do emprego de agregado reciclado.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista, Departamento de Engenharia Civil e AmbientalUniversidade Estadual Paulista, Departamento de Engenharia Civil e AmbientalCAPES: 001CNPq: 423379/2016-0 310401/2019-4FAPESP: 2020/16789-6IBRACON - Instituto Brasileiro do ConcretoUniversidade Estadual Paulista (UNESP)Siqueira, Alana Helena Cara [UNESP]Gimenes, Marcela [UNESP]Manzoli, Osvaldo Luís [UNESP]Rodrigues, Eduardo Alexandre [UNESP]2023-07-29T11:15:04Z2023-07-29T11:15:04Z2023-05-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1590/S1983-41952023000300010Revista IBRACON de Estruturas e Materiais. IBRACON - Instituto Brasileiro do Concreto, v. 16, n. 3, p. -, 2023.1983-4195http://hdl.handle.net/11449/24493810.1590/S1983-41952023000300010S1983-41952023000300205S1983-41952023000300205.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista IBRACON de Estruturas e Materiaisinfo:eu-repo/semantics/openAccess2024-01-26T06:29:18Zoai:repositorio.unesp.br:11449/244938Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-01-26T06:29:18Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
Simulação numérica de ruptura por punção em lajes de concreto com agregado reciclado com reforço de fibra de aço
title Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
spellingShingle Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
Siqueira, Alana Helena Cara [UNESP]
recycled aggregate
steel fiber
punching failure
finite element
constitutive models
agregado reciclado
fibras de aço
falha por punção
elementos finitos
modelos constitutivos
title_short Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
title_full Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
title_fullStr Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
title_full_unstemmed Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
title_sort Numerical simulation of punching shear failure in recycled aggregate concrete slabs with steel fiber reinforcement
author Siqueira, Alana Helena Cara [UNESP]
author_facet Siqueira, Alana Helena Cara [UNESP]
Gimenes, Marcela [UNESP]
Manzoli, Osvaldo Luís [UNESP]
Rodrigues, Eduardo Alexandre [UNESP]
author_role author
author2 Gimenes, Marcela [UNESP]
Manzoli, Osvaldo Luís [UNESP]
Rodrigues, Eduardo Alexandre [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Siqueira, Alana Helena Cara [UNESP]
Gimenes, Marcela [UNESP]
Manzoli, Osvaldo Luís [UNESP]
Rodrigues, Eduardo Alexandre [UNESP]
dc.subject.por.fl_str_mv recycled aggregate
steel fiber
punching failure
finite element
constitutive models
agregado reciclado
fibras de aço
falha por punção
elementos finitos
modelos constitutivos
topic recycled aggregate
steel fiber
punching failure
finite element
constitutive models
agregado reciclado
fibras de aço
falha por punção
elementos finitos
modelos constitutivos
description The use of construction waste as aggregate in the production of concrete is becoming a more frequent alternative due to the advantages associated with the sustainability aspect. Results obtained in experimental tests with recycled aggregate concrete suggest that mechanical properties such as elastic modulus, compressive, tensile and flexural strength tend to reduce with partial or total replacement of natural aggregate by recycled one. On the other hand, the use of steel fiber reinforcement can minimize the reduction of these properties, since the fibers tend to improve the material strength and ductility. This work proposes a numerical approach, seeking to better predict and understand the structural mechanical behaviors and failure patterns of reinforced recycled aggregate concrete slabs with and without steel fiber. Based on the finite element method, an appropriated constitutive damage model is employed to represent the nonlinear behavior of the conventional/recycled concrete, while an elastic-perfectly plastic model is used to describe the mechanical behavior of the reinforcements. To couple the independent FE meshes and incorporate the mutual interaction between the different components, rigid and non-rigid coupling technique is used to represent the perfect adherence or the bond-slip behavior. Seven concrete slabs were numerically analyzed either with different percentages of recycled aggregate replacement (0, 50 and 100%) or steel fibers content (0.0, 0.5 and 1.0%) and the results were compared with the experimental ones. The results showed that the applied methodology is capable of simulating with good accuracy the punching shear failure mechanism of the slabs. It was observed that the punching ultimate load decreased with increase of recycled aggregate content, as well as that the steel fiber addition can minimize the negative effects of recycled aggregate employment.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T11:15:04Z
2023-07-29T11:15:04Z
2023-05-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S1983-41952023000300010
Revista IBRACON de Estruturas e Materiais. IBRACON - Instituto Brasileiro do Concreto, v. 16, n. 3, p. -, 2023.
1983-4195
http://hdl.handle.net/11449/244938
10.1590/S1983-41952023000300010
S1983-41952023000300205
S1983-41952023000300205.pdf
url http://dx.doi.org/10.1590/S1983-41952023000300010
http://hdl.handle.net/11449/244938
identifier_str_mv Revista IBRACON de Estruturas e Materiais. IBRACON - Instituto Brasileiro do Concreto, v. 16, n. 3, p. -, 2023.
1983-4195
10.1590/S1983-41952023000300010
S1983-41952023000300205
S1983-41952023000300205.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista IBRACON de Estruturas e Materiais
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965729562296320