ON INTERSECTION AND TRANSVERSALITY OF MAPS

Detalhes bibliográficos
Autor(a) principal: Libardi, Alice K. M. [UNESP]
Data de Publicação: 2023
Outros Autores: Mattos, Denise de, Santos, Edivaldo L. dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1090/proc/16123
http://hdl.handle.net/11449/245620
Resumo: Given a smooth map fV: V-+ K with f*V(nu K) = nu V, a gen-eral question arises: under which conditions there exists a smooth extension f : M-+ N of fV such that f is transverse to K and f-1(K) = V, where M, N are smooth closed manifolds of dimension m and n, V, K are closed submanifolds of M and N, respectively, of same codimension and nu K, nu V are the normal bundles of K in N and V in M, respectively. In this paper, we give conditions to the existence of extensions, by using bordism intersection pro d-uct. Moreover, we present an interesting and non-trivial example illustrating the systematic construction of such extensions, skeletonwise.
id UNSP_78b7375543e6b69f35cecab79fb3c5f1
oai_identifier_str oai:repositorio.unesp.br:11449/245620
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling ON INTERSECTION AND TRANSVERSALITY OF MAPSExtension of mapsobstructionhomotopytransversalityGiven a smooth map fV: V-+ K with f*V(nu K) = nu V, a gen-eral question arises: under which conditions there exists a smooth extension f : M-+ N of fV such that f is transverse to K and f-1(K) = V, where M, N are smooth closed manifolds of dimension m and n, V, K are closed submanifolds of M and N, respectively, of same codimension and nu K, nu V are the normal bundles of K in N and V in M, respectively. In this paper, we give conditions to the existence of extensions, by using bordism intersection pro d-uct. Moreover, we present an interesting and non-trivial example illustrating the systematic construction of such extensions, skeletonwise.Sao Paulo State Univ UNESP, Inst Geosci & Exact Sci, Dept Matemat, Bela Vista, BR-13506700 Rio Claro, SP, BrazilUniv Sao Paulo USP ICMC, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP, BrazilUniv Fed Sao Carlos, Dept Matemat, Rodovia Washington Luiz Km 235, Sao Carlos, SP, BrazilSao Paulo State Univ UNESP, Inst Geosci & Exact Sci, Dept Matemat, Bela Vista, BR-13506700 Rio Claro, SP, BrazilAmer Mathematical SocUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Federal de São Carlos (UFSCar)Libardi, Alice K. M. [UNESP]Mattos, Denise deSantos, Edivaldo L. dos2023-07-29T12:00:18Z2023-07-29T12:00:18Z2023-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12http://dx.doi.org/10.1090/proc/16123Proceedings of the American Mathematical Society. Providence: Amer Mathematical Soc, 12 p., 2023.0002-9939http://hdl.handle.net/11449/24562010.1090/proc/16123WOS:000971514100001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The American Mathematical Societyinfo:eu-repo/semantics/openAccess2023-07-29T12:00:18Zoai:repositorio.unesp.br:11449/245620Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:59:03.400237Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv ON INTERSECTION AND TRANSVERSALITY OF MAPS
title ON INTERSECTION AND TRANSVERSALITY OF MAPS
spellingShingle ON INTERSECTION AND TRANSVERSALITY OF MAPS
Libardi, Alice K. M. [UNESP]
Extension of maps
obstruction
homotopy
transversality
title_short ON INTERSECTION AND TRANSVERSALITY OF MAPS
title_full ON INTERSECTION AND TRANSVERSALITY OF MAPS
title_fullStr ON INTERSECTION AND TRANSVERSALITY OF MAPS
title_full_unstemmed ON INTERSECTION AND TRANSVERSALITY OF MAPS
title_sort ON INTERSECTION AND TRANSVERSALITY OF MAPS
author Libardi, Alice K. M. [UNESP]
author_facet Libardi, Alice K. M. [UNESP]
Mattos, Denise de
Santos, Edivaldo L. dos
author_role author
author2 Mattos, Denise de
Santos, Edivaldo L. dos
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Libardi, Alice K. M. [UNESP]
Mattos, Denise de
Santos, Edivaldo L. dos
dc.subject.por.fl_str_mv Extension of maps
obstruction
homotopy
transversality
topic Extension of maps
obstruction
homotopy
transversality
description Given a smooth map fV: V-+ K with f*V(nu K) = nu V, a gen-eral question arises: under which conditions there exists a smooth extension f : M-+ N of fV such that f is transverse to K and f-1(K) = V, where M, N are smooth closed manifolds of dimension m and n, V, K are closed submanifolds of M and N, respectively, of same codimension and nu K, nu V are the normal bundles of K in N and V in M, respectively. In this paper, we give conditions to the existence of extensions, by using bordism intersection pro d-uct. Moreover, we present an interesting and non-trivial example illustrating the systematic construction of such extensions, skeletonwise.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T12:00:18Z
2023-07-29T12:00:18Z
2023-03-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1090/proc/16123
Proceedings of the American Mathematical Society. Providence: Amer Mathematical Soc, 12 p., 2023.
0002-9939
http://hdl.handle.net/11449/245620
10.1090/proc/16123
WOS:000971514100001
url http://dx.doi.org/10.1090/proc/16123
http://hdl.handle.net/11449/245620
identifier_str_mv Proceedings of the American Mathematical Society. Providence: Amer Mathematical Soc, 12 p., 2023.
0002-9939
10.1090/proc/16123
WOS:000971514100001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings Of The American Mathematical Society
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12
dc.publisher.none.fl_str_mv Amer Mathematical Soc
publisher.none.fl_str_mv Amer Mathematical Soc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129007090139136