On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physd.2022.133526 http://hdl.handle.net/11449/245992 |
Resumo: | In this paper, we are concerned about smoothing of Filippov systems around homoclinic-like connections to regular-tangential singularities. We provide conditions to guarantee the existence of limit cycles bifurcating from such connections. Additional conditions are also provided to ensure the stability and uniqueness of such limit cycles. All the proofs are based on the construction of the first return map of the regularized Filippov system around homoclinic-like connections. Such a map is obtained by using a recent characterization of the local behavior of the regularized Filippov system around regular-tangential singularities. Fixed point theorems and Poincaré–Bendixson arguments are also employed. |
id |
UNSP_78c8d440f8300550d50457dbb6d07843 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245992 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularitiesLimit cyclesNonsmooth differential systemsRegularizationTangential singularitiesΣ–polycyclesIn this paper, we are concerned about smoothing of Filippov systems around homoclinic-like connections to regular-tangential singularities. We provide conditions to guarantee the existence of limit cycles bifurcating from such connections. Additional conditions are also provided to ensure the stability and uniqueness of such limit cycles. All the proofs are based on the construction of the first return map of the regularized Filippov system around homoclinic-like connections. Such a map is obtained by using a recent characterization of the local behavior of the regularized Filippov system around regular-tangential singularities. Fixed point theorems and Poincaré–Bendixson arguments are also employed.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Matemática Instituto de Matemática Estatística e Computação Científica (IMECC) Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz, SPUNESP - Universidade Estadual Paulista São José do Rio PretoUNESP - Universidade Estadual Paulista São José do Rio PretoFAPESP: 2018/13481-0FAPESP: 2019/10269-3FAPESP: 2020/06708-9FAPESP: 2021/10606-0CNPq: 309110/2021-1CNPq: 438975/2018-9Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (UNESP)Novaes, Douglas D.Rondón, Gabriel [UNESP]2023-07-29T12:28:49Z2023-07-29T12:28:49Z2022-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.physd.2022.133526Physica D: Nonlinear Phenomena, v. 442.0167-2789http://hdl.handle.net/11449/24599210.1016/j.physd.2022.1335262-s2.0-85139065582Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica D: Nonlinear Phenomenainfo:eu-repo/semantics/openAccess2023-07-29T12:28:49Zoai:repositorio.unesp.br:11449/245992Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:59:32.462105Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
title |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
spellingShingle |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities Novaes, Douglas D. Limit cycles Nonsmooth differential systems Regularization Tangential singularities Σ–polycycles |
title_short |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
title_full |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
title_fullStr |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
title_full_unstemmed |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
title_sort |
On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities |
author |
Novaes, Douglas D. |
author_facet |
Novaes, Douglas D. Rondón, Gabriel [UNESP] |
author_role |
author |
author2 |
Rondón, Gabriel [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Novaes, Douglas D. Rondón, Gabriel [UNESP] |
dc.subject.por.fl_str_mv |
Limit cycles Nonsmooth differential systems Regularization Tangential singularities Σ–polycycles |
topic |
Limit cycles Nonsmooth differential systems Regularization Tangential singularities Σ–polycycles |
description |
In this paper, we are concerned about smoothing of Filippov systems around homoclinic-like connections to regular-tangential singularities. We provide conditions to guarantee the existence of limit cycles bifurcating from such connections. Additional conditions are also provided to ensure the stability and uniqueness of such limit cycles. All the proofs are based on the construction of the first return map of the regularized Filippov system around homoclinic-like connections. Such a map is obtained by using a recent characterization of the local behavior of the regularized Filippov system around regular-tangential singularities. Fixed point theorems and Poincaré–Bendixson arguments are also employed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-15 2023-07-29T12:28:49Z 2023-07-29T12:28:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physd.2022.133526 Physica D: Nonlinear Phenomena, v. 442. 0167-2789 http://hdl.handle.net/11449/245992 10.1016/j.physd.2022.133526 2-s2.0-85139065582 |
url |
http://dx.doi.org/10.1016/j.physd.2022.133526 http://hdl.handle.net/11449/245992 |
identifier_str_mv |
Physica D: Nonlinear Phenomena, v. 442. 0167-2789 10.1016/j.physd.2022.133526 2-s2.0-85139065582 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica D: Nonlinear Phenomena |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128882566496256 |