A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops

Detalhes bibliográficos
Autor(a) principal: Figueredo, Luis
Data de Publicação: 2021
Outros Autores: Villa-Murillo, Adriana, Colmenarez, Yelitza [UNESP], Vasquez, Carlos [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/jisesa/ieab017
http://hdl.handle.net/11449/209339
Resumo: Sugarcane spittlebugs are considered important pests in sugarcane crops ranging from the southeastern United States to northern Argentina. To evaluate the effects of climate variables on adult populations of Aeneolamia varia (Fabricius) (Hemiptera: Cercopidae), a 3-yr monitoring study was carried out in sugarcane fields at week-long intervals during the rainy season (May to November 2005-2007). The resulting data were analyzed using the univariate Forest-Genetic method. The best predictive model explained 75.8% variability in physiological damage threshold. It predicted that the main climatic factors influencing the adult population would be, in order of importance, evaporation; evapotranspiration by 0.5; evapotranspiration, cloudiness at 2:00 p.m.; average sunshine and relative humidity at 8:00 a.m. The optimization of the predictive model established that the lower and upper limits of the climatic variables produced a threshold in the population development rate of 184 to 267 adult insects under the agroecological conditions of the study area.These results provide a new perspective on decision-making in the preventive management of A. varia adults in sugarcane crops.
id UNSP_7b2827b3f2671314c8dd2fbff705927c
oai_identifier_str oai:repositorio.unesp.br:11449/209339
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Cropspest insectpopulation management thresholdRandom Forestgenetic algorithmSugarcane spittlebugs are considered important pests in sugarcane crops ranging from the southeastern United States to northern Argentina. To evaluate the effects of climate variables on adult populations of Aeneolamia varia (Fabricius) (Hemiptera: Cercopidae), a 3-yr monitoring study was carried out in sugarcane fields at week-long intervals during the rainy season (May to November 2005-2007). The resulting data were analyzed using the univariate Forest-Genetic method. The best predictive model explained 75.8% variability in physiological damage threshold. It predicted that the main climatic factors influencing the adult population would be, in order of importance, evaporation; evapotranspiration by 0.5; evapotranspiration, cloudiness at 2:00 p.m.; average sunshine and relative humidity at 8:00 a.m. The optimization of the predictive model established that the lower and upper limits of the climatic variables produced a threshold in the population development rate of 184 to 267 adult insects under the agroecological conditions of the study area.These results provide a new perspective on decision-making in the preventive management of A. varia adults in sugarcane crops.Insect Management Sugarcane, Yaritagua, Yaracuy State, VenezuelaUniv Vina del Mar UVM, Life Sci Dept, Vina Del Mar, ChileCABI UNESP FEPAF Fazenda Expt Lageado, Rua Jose Barbosa de Barros 1780, BR-18610307 Botucatu, SP, BrazilTech Univ Ambato UTA, Agr Sci Fac, Cevallos, Province Of Tun, EcuadorCABI UNESP FEPAF Fazenda Expt Lageado, Rua Jose Barbosa de Barros 1780, BR-18610307 Botucatu, SP, BrazilOxford Univ Press IncInsect Management SugarcaneUniv Vina del Mar UVMUniversidade Estadual Paulista (Unesp)Tech Univ Ambato UTAFigueredo, LuisVilla-Murillo, AdrianaColmenarez, Yelitza [UNESP]Vasquez, Carlos [UNESP]2021-06-25T11:56:44Z2021-06-25T11:56:44Z2021-04-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6http://dx.doi.org/10.1093/jisesa/ieab017Journal Of Insect Science. Cary: Oxford Univ Press Inc, v. 21, n. 2, 6 p., 2021.http://hdl.handle.net/11449/20933910.1093/jisesa/ieab017WOS:000641632400001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Insect Scienceinfo:eu-repo/semantics/openAccess2021-10-23T19:28:03Zoai:repositorio.unesp.br:11449/209339Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:51:39.430936Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
title A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
spellingShingle A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
Figueredo, Luis
pest insect
population management threshold
Random Forest
genetic algorithm
title_short A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
title_full A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
title_fullStr A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
title_full_unstemmed A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
title_sort A Hybrid Artificial Intelligence Model for Aeneolamia varia (Hemiptera: Cercopidae) Populations in Sugarcane Crops
author Figueredo, Luis
author_facet Figueredo, Luis
Villa-Murillo, Adriana
Colmenarez, Yelitza [UNESP]
Vasquez, Carlos [UNESP]
author_role author
author2 Villa-Murillo, Adriana
Colmenarez, Yelitza [UNESP]
Vasquez, Carlos [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Insect Management Sugarcane
Univ Vina del Mar UVM
Universidade Estadual Paulista (Unesp)
Tech Univ Ambato UTA
dc.contributor.author.fl_str_mv Figueredo, Luis
Villa-Murillo, Adriana
Colmenarez, Yelitza [UNESP]
Vasquez, Carlos [UNESP]
dc.subject.por.fl_str_mv pest insect
population management threshold
Random Forest
genetic algorithm
topic pest insect
population management threshold
Random Forest
genetic algorithm
description Sugarcane spittlebugs are considered important pests in sugarcane crops ranging from the southeastern United States to northern Argentina. To evaluate the effects of climate variables on adult populations of Aeneolamia varia (Fabricius) (Hemiptera: Cercopidae), a 3-yr monitoring study was carried out in sugarcane fields at week-long intervals during the rainy season (May to November 2005-2007). The resulting data were analyzed using the univariate Forest-Genetic method. The best predictive model explained 75.8% variability in physiological damage threshold. It predicted that the main climatic factors influencing the adult population would be, in order of importance, evaporation; evapotranspiration by 0.5; evapotranspiration, cloudiness at 2:00 p.m.; average sunshine and relative humidity at 8:00 a.m. The optimization of the predictive model established that the lower and upper limits of the climatic variables produced a threshold in the population development rate of 184 to 267 adult insects under the agroecological conditions of the study area.These results provide a new perspective on decision-making in the preventive management of A. varia adults in sugarcane crops.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T11:56:44Z
2021-06-25T11:56:44Z
2021-04-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/jisesa/ieab017
Journal Of Insect Science. Cary: Oxford Univ Press Inc, v. 21, n. 2, 6 p., 2021.
http://hdl.handle.net/11449/209339
10.1093/jisesa/ieab017
WOS:000641632400001
url http://dx.doi.org/10.1093/jisesa/ieab017
http://hdl.handle.net/11449/209339
identifier_str_mv Journal Of Insect Science. Cary: Oxford Univ Press Inc, v. 21, n. 2, 6 p., 2021.
10.1093/jisesa/ieab017
WOS:000641632400001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of Insect Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6
dc.publisher.none.fl_str_mv Oxford Univ Press Inc
publisher.none.fl_str_mv Oxford Univ Press Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128711067697152