Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais

Detalhes bibliográficos
Autor(a) principal: Santos, Rodolfo de Sousa [UNESP]
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/151409
Resumo: Os sinais de vibrações de máquinas rotativas conduzem a informações dinâmicas da máquina e esta análise é de grande importância no que diz respeito ao monitoramento de condição e diagnósticos de máquinas. Vários métodos de análises têm sido empregados no sentido de diagnosticar falhas em componentes de máquinas tais como engrenagens, rolamentos, dentre outros. Este trabalho apresenta uma análise sobre detecção de falhas em rolamentos de máquinas rotativas, e para esta apreciação utilizou-se os bancos de dados da CASE WESTERN RESERV UNIVERSITY e o banco de dados da FEG/UNESP. O objetivo principal deste trabalho foi a implementação de técnicas avançadas para identificar e caracterizar as falhas que são geradas em rolamentos, vislumbrando o aprimoramento da manutenção baseada na condição. Inicialmente, realizou-se a implementação e simulação no banco de dados da (CWRU), utilizando o software MATLAB e por meio da técnica de ressonância de alta frequência (HFRT), obteve-se resultados satisfatórios, entretanto esta metodologia é limitada uma vez que ela é empregada apenas para regime estacionário. A implementação da técnica HFRT não identificou em alguns casos a frequências para caracterização dos defeitos nas pistas dos rolamentos. Em seguida, utilizou-se a técnica Short Time Fourier Transform-STFT. A implementação proporcionou uma análise bem mais sensível aos impactos gerados nas pistas, pois, com a utilização da STFT, foi possível identificar as frequências características de defeitos. Para efeito de comparação optou-se por utilizar a técnica Wavelet combinada com a técnica do envelope. Esta análise foi aplicada usando a Wavelet Daubechies de ordem 4 (db4), em cuja implementação, realizou-se a decomposição do sinal de um rolamento com defeito e verificou-se qual destes apresentou o maior nível RMS e selecionou-se este sinal, pois o mesmo é o nível ideal para aplicação do método. Realizou-se a mesma apreciação ao banco de dados da FEG/UNESP. A análise realizada da técnica de Wavelet combinada com a técnica HFRT foi a que demonstrou melhor capacidade em relação às técnicas HFRT e STFT. Em seguida realizou-se a implementação da técnica de curtose espectral associada à técnica do envelope foi a que proporcionou os resultados mais precisos e satisfatórios, pois com a aplicação dessa metodologia foi possível a determinação de forma automática da região de ressonância e consequentemente uma melhora na caracterização das frequências de defeitos observadas nos rolamentos dos experimentos realizados em máquinas rotativas.
id UNSP_7b6c99ded113d43e6ec39996d2b77d59
oai_identifier_str oai:repositorio.unesp.br:11449/151409
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinaisBearing fault detection in rotating machines using signal processing techniquesMonitoramento de vibraçãotransformada de WaveletDiagnósticos de falhasCondição de monitoramentoAnálise do envelopeCurtose espectralVibration monitoringWavelet transformFault diagnosticsCondition monitoringEnvelope analysisSpectral KurtosisOs sinais de vibrações de máquinas rotativas conduzem a informações dinâmicas da máquina e esta análise é de grande importância no que diz respeito ao monitoramento de condição e diagnósticos de máquinas. Vários métodos de análises têm sido empregados no sentido de diagnosticar falhas em componentes de máquinas tais como engrenagens, rolamentos, dentre outros. Este trabalho apresenta uma análise sobre detecção de falhas em rolamentos de máquinas rotativas, e para esta apreciação utilizou-se os bancos de dados da CASE WESTERN RESERV UNIVERSITY e o banco de dados da FEG/UNESP. O objetivo principal deste trabalho foi a implementação de técnicas avançadas para identificar e caracterizar as falhas que são geradas em rolamentos, vislumbrando o aprimoramento da manutenção baseada na condição. Inicialmente, realizou-se a implementação e simulação no banco de dados da (CWRU), utilizando o software MATLAB e por meio da técnica de ressonância de alta frequência (HFRT), obteve-se resultados satisfatórios, entretanto esta metodologia é limitada uma vez que ela é empregada apenas para regime estacionário. A implementação da técnica HFRT não identificou em alguns casos a frequências para caracterização dos defeitos nas pistas dos rolamentos. Em seguida, utilizou-se a técnica Short Time Fourier Transform-STFT. A implementação proporcionou uma análise bem mais sensível aos impactos gerados nas pistas, pois, com a utilização da STFT, foi possível identificar as frequências características de defeitos. Para efeito de comparação optou-se por utilizar a técnica Wavelet combinada com a técnica do envelope. Esta análise foi aplicada usando a Wavelet Daubechies de ordem 4 (db4), em cuja implementação, realizou-se a decomposição do sinal de um rolamento com defeito e verificou-se qual destes apresentou o maior nível RMS e selecionou-se este sinal, pois o mesmo é o nível ideal para aplicação do método. Realizou-se a mesma apreciação ao banco de dados da FEG/UNESP. A análise realizada da técnica de Wavelet combinada com a técnica HFRT foi a que demonstrou melhor capacidade em relação às técnicas HFRT e STFT. Em seguida realizou-se a implementação da técnica de curtose espectral associada à técnica do envelope foi a que proporcionou os resultados mais precisos e satisfatórios, pois com a aplicação dessa metodologia foi possível a determinação de forma automática da região de ressonância e consequentemente uma melhora na caracterização das frequências de defeitos observadas nos rolamentos dos experimentos realizados em máquinas rotativas.The vibration signals from rotating machines provide a set of dynamic information, which are very important for continuous condition monitoring of machinery. Several analytical methods have been employed in order to diagnose faults in machines components such as gears, bearings and others. This paper presents a fault detection analysis of rotating machinery bearings, using data from CASE WESTERN UNIVERSITY RESERVOIR and the FEG / UNESP database. The main objective of this work is the implementation of advanced techniques to identify and characterize bearing failures, with the purpose to improve maintenance under working conditions. At first, the implementation and simulation were done with data extracted from the database of (CWRU) using MATLAB software and high-frequency resonance technique (HFRT), which led to satisfactory results. However, this technique is limited since it is used only in a stationary regime. In some cases, the implementation of HFRT technique was not able to identify the defect frequencies of the bearing’s races. Next the STFT Short-Time Fourier Transform technique was used. Its implementation provided a much more sensitive analysis of the impacts on the slopes; using STFT allowed to identify the characteristic defect frequencies. For comparison purposes, the wavelet technique combined with the envelope technique were used. This analysis was applied using Daubechies Wavelet of order 4 (DB4). In its implementation, a defective bearing signal was decomposed into various parts. The signal part with the highest RMS level was selected, because it provides best conditions for applying the method. Analogously, data from the FEG / UNESP database were treated. The Wavelet analysis technique combined with HFRT technique demonstrated better capability with respect to the HFRT and STFT techniques. The implementation of the spectral kurtosis technique associated with the envelope technique provided the most accurate and satisfactory results, since with the application of this methodology it was possible to determine the resonance region automatically. Consequently, this is an improvement regarding the characterization of the defect frequencies of the bearings observed in experiments with rotating machinery.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Mathias, Mauro Hugo [UNESP]Universidade Estadual Paulista (Unesp)Santos, Rodolfo de Sousa [UNESP]2017-08-25T16:18:27Z2017-08-25T16:18:27Z2017-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/15140900089095833004080027P69074899537066812porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T13:32:42Zoai:repositorio.unesp.br:11449/151409Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:51:43.531823Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
Bearing fault detection in rotating machines using signal processing techniques
title Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
spellingShingle Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
Santos, Rodolfo de Sousa [UNESP]
Monitoramento de vibração
transformada de Wavelet
Diagnósticos de falhas
Condição de monitoramento
Análise do envelope
Curtose espectral
Vibration monitoring
Wavelet transform
Fault diagnostics
Condition monitoring
Envelope analysis
Spectral Kurtosis
title_short Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
title_full Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
title_fullStr Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
title_full_unstemmed Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
title_sort Detecção de falhas em rolamentos de máquinas rotativas utilizando técnicas de processamentos de sinais
author Santos, Rodolfo de Sousa [UNESP]
author_facet Santos, Rodolfo de Sousa [UNESP]
author_role author
dc.contributor.none.fl_str_mv Mathias, Mauro Hugo [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Santos, Rodolfo de Sousa [UNESP]
dc.subject.por.fl_str_mv Monitoramento de vibração
transformada de Wavelet
Diagnósticos de falhas
Condição de monitoramento
Análise do envelope
Curtose espectral
Vibration monitoring
Wavelet transform
Fault diagnostics
Condition monitoring
Envelope analysis
Spectral Kurtosis
topic Monitoramento de vibração
transformada de Wavelet
Diagnósticos de falhas
Condição de monitoramento
Análise do envelope
Curtose espectral
Vibration monitoring
Wavelet transform
Fault diagnostics
Condition monitoring
Envelope analysis
Spectral Kurtosis
description Os sinais de vibrações de máquinas rotativas conduzem a informações dinâmicas da máquina e esta análise é de grande importância no que diz respeito ao monitoramento de condição e diagnósticos de máquinas. Vários métodos de análises têm sido empregados no sentido de diagnosticar falhas em componentes de máquinas tais como engrenagens, rolamentos, dentre outros. Este trabalho apresenta uma análise sobre detecção de falhas em rolamentos de máquinas rotativas, e para esta apreciação utilizou-se os bancos de dados da CASE WESTERN RESERV UNIVERSITY e o banco de dados da FEG/UNESP. O objetivo principal deste trabalho foi a implementação de técnicas avançadas para identificar e caracterizar as falhas que são geradas em rolamentos, vislumbrando o aprimoramento da manutenção baseada na condição. Inicialmente, realizou-se a implementação e simulação no banco de dados da (CWRU), utilizando o software MATLAB e por meio da técnica de ressonância de alta frequência (HFRT), obteve-se resultados satisfatórios, entretanto esta metodologia é limitada uma vez que ela é empregada apenas para regime estacionário. A implementação da técnica HFRT não identificou em alguns casos a frequências para caracterização dos defeitos nas pistas dos rolamentos. Em seguida, utilizou-se a técnica Short Time Fourier Transform-STFT. A implementação proporcionou uma análise bem mais sensível aos impactos gerados nas pistas, pois, com a utilização da STFT, foi possível identificar as frequências características de defeitos. Para efeito de comparação optou-se por utilizar a técnica Wavelet combinada com a técnica do envelope. Esta análise foi aplicada usando a Wavelet Daubechies de ordem 4 (db4), em cuja implementação, realizou-se a decomposição do sinal de um rolamento com defeito e verificou-se qual destes apresentou o maior nível RMS e selecionou-se este sinal, pois o mesmo é o nível ideal para aplicação do método. Realizou-se a mesma apreciação ao banco de dados da FEG/UNESP. A análise realizada da técnica de Wavelet combinada com a técnica HFRT foi a que demonstrou melhor capacidade em relação às técnicas HFRT e STFT. Em seguida realizou-se a implementação da técnica de curtose espectral associada à técnica do envelope foi a que proporcionou os resultados mais precisos e satisfatórios, pois com a aplicação dessa metodologia foi possível a determinação de forma automática da região de ressonância e consequentemente uma melhora na caracterização das frequências de defeitos observadas nos rolamentos dos experimentos realizados em máquinas rotativas.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-25T16:18:27Z
2017-08-25T16:18:27Z
2017-07-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/151409
000890958
33004080027P6
9074899537066812
url http://hdl.handle.net/11449/151409
identifier_str_mv 000890958
33004080027P6
9074899537066812
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128711204012032