Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IJCNN.2018.8489137 http://hdl.handle.net/11449/189881 |
Resumo: | We developed a bioinspired algorithm to assist in the navigation of an autonomous mobile robot in dynamic environments. The robotic controller uses both an Artificial Neural Network (ANN) and a Genetic Algorithm (GA), aided by a low computational cost vision system. The controller uses the vision system and the ANN to detect and recognize obstacles found in the robot's path. If the object is in the controller's knowledge bank a previously registered deviation solution is applied. Otherwise, the GA must optimize a new route alternative. We modeled and simulated the controller using robot's simulator V-REP, and the Computer Vision System using Scilab software. The contribution of this paper is the development of a hybrid neuro-genetic algorithm to control the navigation of autonomous mobile robots in dynamic environments. |
id |
UNSP_7c4cbf06d002316fd5b425296d440652 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/189881 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile RobotsGenetic algorithmglobal path planningmobile robotneural networkWe developed a bioinspired algorithm to assist in the navigation of an autonomous mobile robot in dynamic environments. The robotic controller uses both an Artificial Neural Network (ANN) and a Genetic Algorithm (GA), aided by a low computational cost vision system. The controller uses the vision system and the ANN to detect and recognize obstacles found in the robot's path. If the object is in the controller's knowledge bank a previously registered deviation solution is applied. Otherwise, the GA must optimize a new route alternative. We modeled and simulated the controller using robot's simulator V-REP, and the Computer Vision System using Scilab software. The contribution of this paper is the development of a hybrid neuro-genetic algorithm to control the navigation of autonomous mobile robots in dynamic environments.University of Sao Paulo (USP)Sao Paulo State University (UNESP)Sao Paulo State University (UNESP)Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Bruno, Diego RenanMarranghello, Norian [UNESP]Osório, Fernando SantosPereira, Aledir Silveira [UNESP]2019-10-06T16:55:14Z2019-10-06T16:55:14Z2018-10-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IJCNN.2018.8489137Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.http://hdl.handle.net/11449/18988110.1109/IJCNN.2018.84891372-s2.0-8505651971120986232628927190000-0003-1086-3312Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2021-10-23T05:43:38Zoai:repositorio.unesp.br:11449/189881Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:10:14.174034Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
title |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
spellingShingle |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots Bruno, Diego Renan Genetic algorithm global path planning mobile robot neural network |
title_short |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
title_full |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
title_fullStr |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
title_full_unstemmed |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
title_sort |
Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots |
author |
Bruno, Diego Renan |
author_facet |
Bruno, Diego Renan Marranghello, Norian [UNESP] Osório, Fernando Santos Pereira, Aledir Silveira [UNESP] |
author_role |
author |
author2 |
Marranghello, Norian [UNESP] Osório, Fernando Santos Pereira, Aledir Silveira [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Bruno, Diego Renan Marranghello, Norian [UNESP] Osório, Fernando Santos Pereira, Aledir Silveira [UNESP] |
dc.subject.por.fl_str_mv |
Genetic algorithm global path planning mobile robot neural network |
topic |
Genetic algorithm global path planning mobile robot neural network |
description |
We developed a bioinspired algorithm to assist in the navigation of an autonomous mobile robot in dynamic environments. The robotic controller uses both an Artificial Neural Network (ANN) and a Genetic Algorithm (GA), aided by a low computational cost vision system. The controller uses the vision system and the ANN to detect and recognize obstacles found in the robot's path. If the object is in the controller's knowledge bank a previously registered deviation solution is applied. Otherwise, the GA must optimize a new route alternative. We modeled and simulated the controller using robot's simulator V-REP, and the Computer Vision System using Scilab software. The contribution of this paper is the development of a hybrid neuro-genetic algorithm to control the navigation of autonomous mobile robots in dynamic environments. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-10 2019-10-06T16:55:14Z 2019-10-06T16:55:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IJCNN.2018.8489137 Proceedings of the International Joint Conference on Neural Networks, v. 2018-July. http://hdl.handle.net/11449/189881 10.1109/IJCNN.2018.8489137 2-s2.0-85056519711 2098623262892719 0000-0003-1086-3312 |
url |
http://dx.doi.org/10.1109/IJCNN.2018.8489137 http://hdl.handle.net/11449/189881 |
identifier_str_mv |
Proceedings of the International Joint Conference on Neural Networks, v. 2018-July. 10.1109/IJCNN.2018.8489137 2-s2.0-85056519711 2098623262892719 0000-0003-1086-3312 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the International Joint Conference on Neural Networks |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128327970455552 |