Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots

Detalhes bibliográficos
Autor(a) principal: Bruno, Diego Renan
Data de Publicação: 2018
Outros Autores: Marranghello, Norian [UNESP], Osório, Fernando Santos, Pereira, Aledir Silveira [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IJCNN.2018.8489137
http://hdl.handle.net/11449/189881
Resumo: We developed a bioinspired algorithm to assist in the navigation of an autonomous mobile robot in dynamic environments. The robotic controller uses both an Artificial Neural Network (ANN) and a Genetic Algorithm (GA), aided by a low computational cost vision system. The controller uses the vision system and the ANN to detect and recognize obstacles found in the robot's path. If the object is in the controller's knowledge bank a previously registered deviation solution is applied. Otherwise, the GA must optimize a new route alternative. We modeled and simulated the controller using robot's simulator V-REP, and the Computer Vision System using Scilab software. The contribution of this paper is the development of a hybrid neuro-genetic algorithm to control the navigation of autonomous mobile robots in dynamic environments.
id UNSP_7c4cbf06d002316fd5b425296d440652
oai_identifier_str oai:repositorio.unesp.br:11449/189881
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Neurogenetic algorithm applied to Route Planning for Autonomous Mobile RobotsGenetic algorithmglobal path planningmobile robotneural networkWe developed a bioinspired algorithm to assist in the navigation of an autonomous mobile robot in dynamic environments. The robotic controller uses both an Artificial Neural Network (ANN) and a Genetic Algorithm (GA), aided by a low computational cost vision system. The controller uses the vision system and the ANN to detect and recognize obstacles found in the robot's path. If the object is in the controller's knowledge bank a previously registered deviation solution is applied. Otherwise, the GA must optimize a new route alternative. We modeled and simulated the controller using robot's simulator V-REP, and the Computer Vision System using Scilab software. The contribution of this paper is the development of a hybrid neuro-genetic algorithm to control the navigation of autonomous mobile robots in dynamic environments.University of Sao Paulo (USP)Sao Paulo State University (UNESP)Sao Paulo State University (UNESP)Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Bruno, Diego RenanMarranghello, Norian [UNESP]Osório, Fernando SantosPereira, Aledir Silveira [UNESP]2019-10-06T16:55:14Z2019-10-06T16:55:14Z2018-10-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IJCNN.2018.8489137Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.http://hdl.handle.net/11449/18988110.1109/IJCNN.2018.84891372-s2.0-8505651971120986232628927190000-0003-1086-3312Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2021-10-23T05:43:38Zoai:repositorio.unesp.br:11449/189881Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:10:14.174034Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
title Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
spellingShingle Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
Bruno, Diego Renan
Genetic algorithm
global path planning
mobile robot
neural network
title_short Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
title_full Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
title_fullStr Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
title_full_unstemmed Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
title_sort Neurogenetic algorithm applied to Route Planning for Autonomous Mobile Robots
author Bruno, Diego Renan
author_facet Bruno, Diego Renan
Marranghello, Norian [UNESP]
Osório, Fernando Santos
Pereira, Aledir Silveira [UNESP]
author_role author
author2 Marranghello, Norian [UNESP]
Osório, Fernando Santos
Pereira, Aledir Silveira [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bruno, Diego Renan
Marranghello, Norian [UNESP]
Osório, Fernando Santos
Pereira, Aledir Silveira [UNESP]
dc.subject.por.fl_str_mv Genetic algorithm
global path planning
mobile robot
neural network
topic Genetic algorithm
global path planning
mobile robot
neural network
description We developed a bioinspired algorithm to assist in the navigation of an autonomous mobile robot in dynamic environments. The robotic controller uses both an Artificial Neural Network (ANN) and a Genetic Algorithm (GA), aided by a low computational cost vision system. The controller uses the vision system and the ANN to detect and recognize obstacles found in the robot's path. If the object is in the controller's knowledge bank a previously registered deviation solution is applied. Otherwise, the GA must optimize a new route alternative. We modeled and simulated the controller using robot's simulator V-REP, and the Computer Vision System using Scilab software. The contribution of this paper is the development of a hybrid neuro-genetic algorithm to control the navigation of autonomous mobile robots in dynamic environments.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-10
2019-10-06T16:55:14Z
2019-10-06T16:55:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IJCNN.2018.8489137
Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.
http://hdl.handle.net/11449/189881
10.1109/IJCNN.2018.8489137
2-s2.0-85056519711
2098623262892719
0000-0003-1086-3312
url http://dx.doi.org/10.1109/IJCNN.2018.8489137
http://hdl.handle.net/11449/189881
identifier_str_mv Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.
10.1109/IJCNN.2018.8489137
2-s2.0-85056519711
2098623262892719
0000-0003-1086-3312
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the International Joint Conference on Neural Networks
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128327970455552