H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3182/20110828-6-IT-1002.02548 http://hdl.handle.net/11449/72902 |
Resumo: | This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC. |
id |
UNSP_7c512249296557221224db574c577aef |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72902 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalitiesDiscrete-time systemsLinear Matrix InequalitiesMarkov modelsState-feedback controlBounded parametersClosed loopsDesign problemsDiscrete time systemLinear feedback controllersMarkov jump linear systemsMarkov modelMarkov parametersRobust controller designTransition probabilitiesDigital control systemsDiscrete time control systemsFeedback controlLinear matrix inequalitiesMarkov processesState feedbackControllersThis paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.Univ. Estadual Paulista - UNESP, Sorocaba, SPInstitute National de Recherche en Informatique et en Automatique, Orsay CedexDepartment of Electrical and Computer Engineering University of Sharjah, SharjahDSCE School of Electrical and Computer Engineering UNICAMP., Campinas, SPUniv. Estadual Paulista - UNESP, Sorocaba, SPUniversidade Estadual Paulista (Unesp)Institute National de Recherche en Informatique et en AutomatiqueUniversity of SharjahUniversidade Estadual de Campinas (UNICAMP)Gonçalves, A. P C [UNESP]Fioravanti, A. R.Al-Radhawi, M. A.Geromel, J. C.2014-05-27T11:26:15Z2014-05-27T11:26:15Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject12620-12625http://dx.doi.org/10.3182/20110828-6-IT-1002.02548IFAC Proceedings Volumes (IFAC-PapersOnline), v. 18, n. PART 1, p. 12620-12625, 2011.1474-6670http://hdl.handle.net/11449/7290210.3182/20110828-6-IT-1002.025482-s2.0-84861720425Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIFAC Proceedings Volumes (IFAC-PapersOnline)info:eu-repo/semantics/openAccess2021-10-23T21:37:50Zoai:repositorio.unesp.br:11449/72902Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:44:49.080470Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
title |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
spellingShingle |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities Gonçalves, A. P C [UNESP] Discrete-time systems Linear Matrix Inequalities Markov models State-feedback control Bounded parameters Closed loops Design problems Discrete time system Linear feedback controllers Markov jump linear systems Markov model Markov parameters Robust controller design Transition probabilities Digital control systems Discrete time control systems Feedback control Linear matrix inequalities Markov processes State feedback Controllers |
title_short |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
title_full |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
title_fullStr |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
title_full_unstemmed |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
title_sort |
H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities |
author |
Gonçalves, A. P C [UNESP] |
author_facet |
Gonçalves, A. P C [UNESP] Fioravanti, A. R. Al-Radhawi, M. A. Geromel, J. C. |
author_role |
author |
author2 |
Fioravanti, A. R. Al-Radhawi, M. A. Geromel, J. C. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Institute National de Recherche en Informatique et en Automatique University of Sharjah Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Gonçalves, A. P C [UNESP] Fioravanti, A. R. Al-Radhawi, M. A. Geromel, J. C. |
dc.subject.por.fl_str_mv |
Discrete-time systems Linear Matrix Inequalities Markov models State-feedback control Bounded parameters Closed loops Design problems Discrete time system Linear feedback controllers Markov jump linear systems Markov model Markov parameters Robust controller design Transition probabilities Digital control systems Discrete time control systems Feedback control Linear matrix inequalities Markov processes State feedback Controllers |
topic |
Discrete-time systems Linear Matrix Inequalities Markov models State-feedback control Bounded parameters Closed loops Design problems Discrete time system Linear feedback controllers Markov jump linear systems Markov model Markov parameters Robust controller design Transition probabilities Digital control systems Discrete time control systems Feedback control Linear matrix inequalities Markov processes State feedback Controllers |
description |
This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-01 2014-05-27T11:26:15Z 2014-05-27T11:26:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3182/20110828-6-IT-1002.02548 IFAC Proceedings Volumes (IFAC-PapersOnline), v. 18, n. PART 1, p. 12620-12625, 2011. 1474-6670 http://hdl.handle.net/11449/72902 10.3182/20110828-6-IT-1002.02548 2-s2.0-84861720425 |
url |
http://dx.doi.org/10.3182/20110828-6-IT-1002.02548 http://hdl.handle.net/11449/72902 |
identifier_str_mv |
IFAC Proceedings Volumes (IFAC-PapersOnline), v. 18, n. PART 1, p. 12620-12625, 2011. 1474-6670 10.3182/20110828-6-IT-1002.02548 2-s2.0-84861720425 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
IFAC Proceedings Volumes (IFAC-PapersOnline) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12620-12625 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129353765093376 |