H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities

Detalhes bibliográficos
Autor(a) principal: Gonçalves, A. P C [UNESP]
Data de Publicação: 2011
Outros Autores: Fioravanti, A. R., Al-Radhawi, M. A., Geromel, J. C.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3182/20110828-6-IT-1002.02548
http://hdl.handle.net/11449/72902
Resumo: This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.
id UNSP_7c512249296557221224db574c577aef
oai_identifier_str oai:repositorio.unesp.br:11449/72902
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalitiesDiscrete-time systemsLinear Matrix InequalitiesMarkov modelsState-feedback controlBounded parametersClosed loopsDesign problemsDiscrete time systemLinear feedback controllersMarkov jump linear systemsMarkov modelMarkov parametersRobust controller designTransition probabilitiesDigital control systemsDiscrete time control systemsFeedback controlLinear matrix inequalitiesMarkov processesState feedbackControllersThis paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.Univ. Estadual Paulista - UNESP, Sorocaba, SPInstitute National de Recherche en Informatique et en Automatique, Orsay CedexDepartment of Electrical and Computer Engineering University of Sharjah, SharjahDSCE School of Electrical and Computer Engineering UNICAMP., Campinas, SPUniv. Estadual Paulista - UNESP, Sorocaba, SPUniversidade Estadual Paulista (Unesp)Institute National de Recherche en Informatique et en AutomatiqueUniversity of SharjahUniversidade Estadual de Campinas (UNICAMP)Gonçalves, A. P C [UNESP]Fioravanti, A. R.Al-Radhawi, M. A.Geromel, J. C.2014-05-27T11:26:15Z2014-05-27T11:26:15Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject12620-12625http://dx.doi.org/10.3182/20110828-6-IT-1002.02548IFAC Proceedings Volumes (IFAC-PapersOnline), v. 18, n. PART 1, p. 12620-12625, 2011.1474-6670http://hdl.handle.net/11449/7290210.3182/20110828-6-IT-1002.025482-s2.0-84861720425Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIFAC Proceedings Volumes (IFAC-PapersOnline)info:eu-repo/semantics/openAccess2021-10-23T21:37:50Zoai:repositorio.unesp.br:11449/72902Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:44:49.080470Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
title H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
spellingShingle H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
Gonçalves, A. P C [UNESP]
Discrete-time systems
Linear Matrix Inequalities
Markov models
State-feedback control
Bounded parameters
Closed loops
Design problems
Discrete time system
Linear feedback controllers
Markov jump linear systems
Markov model
Markov parameters
Robust controller design
Transition probabilities
Digital control systems
Discrete time control systems
Feedback control
Linear matrix inequalities
Markov processes
State feedback
Controllers
title_short H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
title_full H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
title_fullStr H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
title_full_unstemmed H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
title_sort H ∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities
author Gonçalves, A. P C [UNESP]
author_facet Gonçalves, A. P C [UNESP]
Fioravanti, A. R.
Al-Radhawi, M. A.
Geromel, J. C.
author_role author
author2 Fioravanti, A. R.
Al-Radhawi, M. A.
Geromel, J. C.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Institute National de Recherche en Informatique et en Automatique
University of Sharjah
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Gonçalves, A. P C [UNESP]
Fioravanti, A. R.
Al-Radhawi, M. A.
Geromel, J. C.
dc.subject.por.fl_str_mv Discrete-time systems
Linear Matrix Inequalities
Markov models
State-feedback control
Bounded parameters
Closed loops
Design problems
Discrete time system
Linear feedback controllers
Markov jump linear systems
Markov model
Markov parameters
Robust controller design
Transition probabilities
Digital control systems
Discrete time control systems
Feedback control
Linear matrix inequalities
Markov processes
State feedback
Controllers
topic Discrete-time systems
Linear Matrix Inequalities
Markov models
State-feedback control
Bounded parameters
Closed loops
Design problems
Discrete time system
Linear feedback controllers
Markov jump linear systems
Markov model
Markov parameters
Robust controller design
Transition probabilities
Digital control systems
Discrete time control systems
Feedback control
Linear matrix inequalities
Markov processes
State feedback
Controllers
description This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-01
2014-05-27T11:26:15Z
2014-05-27T11:26:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3182/20110828-6-IT-1002.02548
IFAC Proceedings Volumes (IFAC-PapersOnline), v. 18, n. PART 1, p. 12620-12625, 2011.
1474-6670
http://hdl.handle.net/11449/72902
10.3182/20110828-6-IT-1002.02548
2-s2.0-84861720425
url http://dx.doi.org/10.3182/20110828-6-IT-1002.02548
http://hdl.handle.net/11449/72902
identifier_str_mv IFAC Proceedings Volumes (IFAC-PapersOnline), v. 18, n. PART 1, p. 12620-12625, 2011.
1474-6670
10.3182/20110828-6-IT-1002.02548
2-s2.0-84861720425
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IFAC Proceedings Volumes (IFAC-PapersOnline)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12620-12625
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129353765093376