Self-optimization of dense wireless sensor networks based on simulated annealing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/LATW.2012.6261236 http://hdl.handle.net/11449/73652 |
Resumo: | Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE. |
id |
UNSP_7cfe398be0c0d8faf36e3406740edff7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73652 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Self-optimization of dense wireless sensor networks based on simulated annealingSelf-OptimizationSimulated AnnealingWireless Sensor NetworksNon-intrusiveReal time requirementSelf-optimizationWireless communicationsNetwork managementSimulated annealingWireless sensor networksWireless telecommunication systemsSensor nodesWireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.DCCE UNESP Universidade Estadual Paulista, São José do Rio PretoUFSC Universidade Federal de Santa Catarina, FlorianópolisDCCE UNESP Universidade Estadual Paulista, São José do Rio PretoUniversidade Estadual Paulista (Unesp)Universidade Federal de Santa Catarina (UFSC)Pinto, A. R. [UNESP]Cansian, Adriano [UNESP]MacHado, José Marcio [UNESP]Montez, Carlos2014-05-27T11:27:06Z2014-05-27T11:27:06Z2012-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/LATW.2012.6261236LATW 2012 - 13th IEEE Latin American Test Workshop.http://hdl.handle.net/11449/7365210.1109/LATW.2012.62612362-s2.0-8486692498600959219433459740000-0003-4494-1454Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLATW 2012 - 13th IEEE Latin American Test Workshopinfo:eu-repo/semantics/openAccess2021-10-23T21:44:32Zoai:repositorio.unesp.br:11449/73652Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:04:46.107139Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Self-optimization of dense wireless sensor networks based on simulated annealing |
title |
Self-optimization of dense wireless sensor networks based on simulated annealing |
spellingShingle |
Self-optimization of dense wireless sensor networks based on simulated annealing Pinto, A. R. [UNESP] Self-Optimization Simulated Annealing Wireless Sensor Networks Non-intrusive Real time requirement Self-optimization Wireless communications Network management Simulated annealing Wireless sensor networks Wireless telecommunication systems Sensor nodes |
title_short |
Self-optimization of dense wireless sensor networks based on simulated annealing |
title_full |
Self-optimization of dense wireless sensor networks based on simulated annealing |
title_fullStr |
Self-optimization of dense wireless sensor networks based on simulated annealing |
title_full_unstemmed |
Self-optimization of dense wireless sensor networks based on simulated annealing |
title_sort |
Self-optimization of dense wireless sensor networks based on simulated annealing |
author |
Pinto, A. R. [UNESP] |
author_facet |
Pinto, A. R. [UNESP] Cansian, Adriano [UNESP] MacHado, José Marcio [UNESP] Montez, Carlos |
author_role |
author |
author2 |
Cansian, Adriano [UNESP] MacHado, José Marcio [UNESP] Montez, Carlos |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Santa Catarina (UFSC) |
dc.contributor.author.fl_str_mv |
Pinto, A. R. [UNESP] Cansian, Adriano [UNESP] MacHado, José Marcio [UNESP] Montez, Carlos |
dc.subject.por.fl_str_mv |
Self-Optimization Simulated Annealing Wireless Sensor Networks Non-intrusive Real time requirement Self-optimization Wireless communications Network management Simulated annealing Wireless sensor networks Wireless telecommunication systems Sensor nodes |
topic |
Self-Optimization Simulated Annealing Wireless Sensor Networks Non-intrusive Real time requirement Self-optimization Wireless communications Network management Simulated annealing Wireless sensor networks Wireless telecommunication systems Sensor nodes |
description |
Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10-05 2014-05-27T11:27:06Z 2014-05-27T11:27:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/LATW.2012.6261236 LATW 2012 - 13th IEEE Latin American Test Workshop. http://hdl.handle.net/11449/73652 10.1109/LATW.2012.6261236 2-s2.0-84866924986 0095921943345974 0000-0003-4494-1454 |
url |
http://dx.doi.org/10.1109/LATW.2012.6261236 http://hdl.handle.net/11449/73652 |
identifier_str_mv |
LATW 2012 - 13th IEEE Latin American Test Workshop. 10.1109/LATW.2012.6261236 2-s2.0-84866924986 0095921943345974 0000-0003-4494-1454 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
LATW 2012 - 13th IEEE Latin American Test Workshop |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128456104345600 |