Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo

Detalhes bibliográficos
Autor(a) principal: Presotto, Adriana Guirao
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/192560
Resumo: Correntes de transporte interagem com os vórtices de Abrikosov nos supercondutores do tipo II via força de Lorentz (FL), o que pode resultar em seu movimento. Esse movimento ocorrerá se FL suprimir a força de pinning (FP) [4,6], que mantém os vórtices ancorados, tais como defeitos e orifícios artificiais nas amostras. Nos casos em que FL >> FP, os vórtices se movem livremente e experimentam apenas resistência viscosa devido à sua interação com o condensado supercondutor. Esse estado de movimento é conhecido como flux flow (FF). Assim, no presente trabalho, estudamos a dinâmica dos vórtices em uma fita supercondutora com tamanhos laterais de 10 ξ(0) x 70 ξ(0), com seis grãos espaçados por um supercondutor de menor Tc, i.e., um weak-link (WL). Além disso, em cada grão foram considerados quatro defeitos da mesma natureza que os WL’s, simulando defeitos intrínsecos. Para tal estudos, as equações generalizadas de Ginzburg-Landau dependentes do tempo (GTDGL) foram solucionadas numericamente. Assim, foram considerados três valores diferentes de campos magnéticos externos, i.e., Hap = 0,1 Hc2(0), 0,3 Hc2(0) e 0,5 Hc2(0), e densidade de correntes de transporte de intensidade que variou em passos de 0,005J0. Observou-se que a intensidade de Hap, influencia diretamente nos regimes de movimento, onde para Hap = 0,1 Hc2(0) foi verificado apenas o FF intergranular e uma dinâmica mais duradoura. Já para Hap = 0,3 Hc2(0) e 0,5 Hc2(0) foram observados dois regimes de movimento, o flux flow (FF) inter e o intragranular, porém houve uma destruição mais rápida do supercondutor (SC). Verificou-se, ainda, que o sinal de V(t) é apresentado em forma de “pacotes” de repetições, sendo que há uma maior modulação e dissipação quando inicia-se o regime de FF intragranular. Já as frequências de oscilação são da ordem de GHz, possuindo uma dependência com Hap. Isso é devido ao maior número de vórtices de Abrikosov interagindo no SC, o que causa um aumento no período de oscilação de V(t).
id UNSP_7d16c739c9ad4358a6bb4c22c9e1a24d
oai_identifier_str oai:repositorio.unesp.br:11449/192560
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempoMagneto-electric response of granular superconducting nanofibers: simulations using the time-dependent Ginzburg-Landau formalismSupercondutores granularesGTDGLDinâmica de vórticesFlux FlowCorrentes de transporte interagem com os vórtices de Abrikosov nos supercondutores do tipo II via força de Lorentz (FL), o que pode resultar em seu movimento. Esse movimento ocorrerá se FL suprimir a força de pinning (FP) [4,6], que mantém os vórtices ancorados, tais como defeitos e orifícios artificiais nas amostras. Nos casos em que FL >> FP, os vórtices se movem livremente e experimentam apenas resistência viscosa devido à sua interação com o condensado supercondutor. Esse estado de movimento é conhecido como flux flow (FF). Assim, no presente trabalho, estudamos a dinâmica dos vórtices em uma fita supercondutora com tamanhos laterais de 10 ξ(0) x 70 ξ(0), com seis grãos espaçados por um supercondutor de menor Tc, i.e., um weak-link (WL). Além disso, em cada grão foram considerados quatro defeitos da mesma natureza que os WL’s, simulando defeitos intrínsecos. Para tal estudos, as equações generalizadas de Ginzburg-Landau dependentes do tempo (GTDGL) foram solucionadas numericamente. Assim, foram considerados três valores diferentes de campos magnéticos externos, i.e., Hap = 0,1 Hc2(0), 0,3 Hc2(0) e 0,5 Hc2(0), e densidade de correntes de transporte de intensidade que variou em passos de 0,005J0. Observou-se que a intensidade de Hap, influencia diretamente nos regimes de movimento, onde para Hap = 0,1 Hc2(0) foi verificado apenas o FF intergranular e uma dinâmica mais duradoura. Já para Hap = 0,3 Hc2(0) e 0,5 Hc2(0) foram observados dois regimes de movimento, o flux flow (FF) inter e o intragranular, porém houve uma destruição mais rápida do supercondutor (SC). Verificou-se, ainda, que o sinal de V(t) é apresentado em forma de “pacotes” de repetições, sendo que há uma maior modulação e dissipação quando inicia-se o regime de FF intragranular. Já as frequências de oscilação são da ordem de GHz, possuindo uma dependência com Hap. Isso é devido ao maior número de vórtices de Abrikosov interagindo no SC, o que causa um aumento no período de oscilação de V(t).Transport currents interact with Abrikosov vortices in type II superconductors via Lorentz force (FL), which can result in their motion. Such movement will occur if FL suppresses the pinning force (FP) [4,6], which keeps vortices trapped, such as defects and artificial holes in the samples. In cases where FL >> FP, the vortices move freely and experience only a viscous resistance due to their interaction with the superconducting condensate. This state of motion is known as flux flow (FF). Thus, in the present work, we studied the vortex dynamics a superconducting tape with lateral sizes of 10 ξ(0) x 70 ξ(0), with six grains spaced by a smaller Tc superconductor, i.e., a weak-link (WL). In addition, in each grain, four defects of the same nature as the WL's were considered, simulating intrinsic defects. For such studies, the generalized time-dependent Ginzburg-Landau equations (GTDGL) were solved numerically. Thus, three different values for the external magnetic field were considered, i.e., Hap = 0.1 Hc2(0), 0.3 Hc2(0) and 0.5 Hc2(0), and density of transport currents of intensity that varied in steps of 0,005 J0. It was observed that the intensity of Hap directly influences the motion regimes, where for Hap = 0.1 Hc2 (0) it was verified only the intergranular FF and a longer dynamics. For Hap = 0.3 Hc2(0) and 0.5 Hc2(0), two motion regimes were observed, the inter and intragranular FF. However, there was a faster destruction of the superconductor (SC). It was also found that the V(t) response presented a repetition “packages”, with greater modulation and dissipation when the intragranular FF regime starts. The oscillation frequencies are of the order of GHz, having a dependence on Hap. This is due to the greater number of Abrikosov vortices interacting in the superconductor, which causes an increase in the period of oscillation of V(t).Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 130830/2018-6Universidade Estadual Paulista (Unesp)Zadorosny, Rafael [UNESP]Duarte, Elwis Carlos Sartorelli [UNESP]Universidade Estadual Paulista (Unesp)Presotto, Adriana Guirao2020-05-14T11:47:13Z2020-05-14T11:47:13Z2020-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/19256000093140733004099083P969133512511489570000-0002-2419-2049porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-10T20:11:10Zoai:repositorio.unesp.br:11449/192560Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:06:05.452594Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
Magneto-electric response of granular superconducting nanofibers: simulations using the time-dependent Ginzburg-Landau formalism
title Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
spellingShingle Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
Presotto, Adriana Guirao
Supercondutores granulares
GTDGL
Dinâmica de vórtices
Flux Flow
title_short Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
title_full Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
title_fullStr Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
title_full_unstemmed Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
title_sort Resposta magneto-elétrica de nanofitas supercondutoras granulares: simulações utilizando o formalismo de Ginzburg-Landau dependente do tempo
author Presotto, Adriana Guirao
author_facet Presotto, Adriana Guirao
author_role author
dc.contributor.none.fl_str_mv Zadorosny, Rafael [UNESP]
Duarte, Elwis Carlos Sartorelli [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Presotto, Adriana Guirao
dc.subject.por.fl_str_mv Supercondutores granulares
GTDGL
Dinâmica de vórtices
Flux Flow
topic Supercondutores granulares
GTDGL
Dinâmica de vórtices
Flux Flow
description Correntes de transporte interagem com os vórtices de Abrikosov nos supercondutores do tipo II via força de Lorentz (FL), o que pode resultar em seu movimento. Esse movimento ocorrerá se FL suprimir a força de pinning (FP) [4,6], que mantém os vórtices ancorados, tais como defeitos e orifícios artificiais nas amostras. Nos casos em que FL >> FP, os vórtices se movem livremente e experimentam apenas resistência viscosa devido à sua interação com o condensado supercondutor. Esse estado de movimento é conhecido como flux flow (FF). Assim, no presente trabalho, estudamos a dinâmica dos vórtices em uma fita supercondutora com tamanhos laterais de 10 ξ(0) x 70 ξ(0), com seis grãos espaçados por um supercondutor de menor Tc, i.e., um weak-link (WL). Além disso, em cada grão foram considerados quatro defeitos da mesma natureza que os WL’s, simulando defeitos intrínsecos. Para tal estudos, as equações generalizadas de Ginzburg-Landau dependentes do tempo (GTDGL) foram solucionadas numericamente. Assim, foram considerados três valores diferentes de campos magnéticos externos, i.e., Hap = 0,1 Hc2(0), 0,3 Hc2(0) e 0,5 Hc2(0), e densidade de correntes de transporte de intensidade que variou em passos de 0,005J0. Observou-se que a intensidade de Hap, influencia diretamente nos regimes de movimento, onde para Hap = 0,1 Hc2(0) foi verificado apenas o FF intergranular e uma dinâmica mais duradoura. Já para Hap = 0,3 Hc2(0) e 0,5 Hc2(0) foram observados dois regimes de movimento, o flux flow (FF) inter e o intragranular, porém houve uma destruição mais rápida do supercondutor (SC). Verificou-se, ainda, que o sinal de V(t) é apresentado em forma de “pacotes” de repetições, sendo que há uma maior modulação e dissipação quando inicia-se o regime de FF intragranular. Já as frequências de oscilação são da ordem de GHz, possuindo uma dependência com Hap. Isso é devido ao maior número de vórtices de Abrikosov interagindo no SC, o que causa um aumento no período de oscilação de V(t).
publishDate 2020
dc.date.none.fl_str_mv 2020-05-14T11:47:13Z
2020-05-14T11:47:13Z
2020-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/192560
000931407
33004099083P9
6913351251148957
0000-0002-2419-2049
url http://hdl.handle.net/11449/192560
identifier_str_mv 000931407
33004099083P9
6913351251148957
0000-0002-2419-2049
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128607205195776