Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1364/OSAC.402485 http://hdl.handle.net/11449/208668 |
Resumo: | Laser vibrometry has many applications in non-contact dynamic displacement and vibration measurement. A test beam reflected from a target and a reference beam are combined and detected by a photodiode; the photodetected signal is then processed to determine the target displacement and vibration. This paper describes the use of a 9 kHz measurement bandwidth system, consisting of a Michelson interferometer and self-correcting feedback synthetic-heterodyne signal processing technique, to measure the displacement impulse response of a commercial piezoelectric mirror shifter (PMS), consisting of a mirror mounted on a Piezoelectric transducer and a connecting 50 Ω electrical coaxial cable. The actual non-ideal applied impulse and measured impulse response data were used in conjunction with the instrument variable method to determine a Laplace domain linear transfer function approximation to the actual PMS transfer function. The best transfer function fitting, having a 84% normalized root mean square goodness of fit, was obtained using a 5-th order transfer function having two complex conjugate pole pairs, with associated natural frequencies of 6.29 and 6.79 kHz, and a single real pole. The transfer function zeros consisted of a single complex conjugate zero pair, having an antiresonance frequency of 6.38 kHz and a single real zero. Knowing the analytic transfer function of PMS based nanopositioners is useful for example in the design of closed-loop phase-locked interferometers for wideband sensing. |
id |
UNSP_7fa283312e4ea786286fec4e46732f05 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/208668 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometryLaser vibrometry has many applications in non-contact dynamic displacement and vibration measurement. A test beam reflected from a target and a reference beam are combined and detected by a photodiode; the photodetected signal is then processed to determine the target displacement and vibration. This paper describes the use of a 9 kHz measurement bandwidth system, consisting of a Michelson interferometer and self-correcting feedback synthetic-heterodyne signal processing technique, to measure the displacement impulse response of a commercial piezoelectric mirror shifter (PMS), consisting of a mirror mounted on a Piezoelectric transducer and a connecting 50 Ω electrical coaxial cable. The actual non-ideal applied impulse and measured impulse response data were used in conjunction with the instrument variable method to determine a Laplace domain linear transfer function approximation to the actual PMS transfer function. The best transfer function fitting, having a 84% normalized root mean square goodness of fit, was obtained using a 5-th order transfer function having two complex conjugate pole pairs, with associated natural frequencies of 6.29 and 6.79 kHz, and a single real pole. The transfer function zeros consisted of a single complex conjugate zero pair, having an antiresonance frequency of 6.38 kHz and a single real zero. Knowing the analytic transfer function of PMS based nanopositioners is useful for example in the design of closed-loop phase-locked interferometers for wideband sensing.Enterprise IrelandConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Optical Communications Research Group Department of Electronic and Computer Engineering University of LimerickFederal Institute of Mato Grosso do SulDepartment of Electrical Engineering São Paulo State University (UNESP)Department of Electrical Engineering São Paulo State University (UNESP)Enterprise Ireland: CFTD/07/IT/312bCNPq: CNPq 420673/2016-4University of LimerickFederal Institute of Mato Grosso do SulUniversidade Estadual Paulista (Unesp)Connelly, Michael J.Galeti, José HenriqueKitano, Cláudio [UNESP]2021-06-25T11:15:57Z2021-06-25T11:15:57Z2020-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3424-3432http://dx.doi.org/10.1364/OSAC.402485OSA Continuum, v. 3, n. 12, p. 3424-3432, 2020.2578-7519http://hdl.handle.net/11449/20866810.1364/OSAC.4024852-s2.0-8510568932628834403518951670000-0001-6320-755XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOSA Continuuminfo:eu-repo/semantics/openAccess2024-07-04T19:06:35Zoai:repositorio.unesp.br:11449/208668Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:37:32.680390Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
title |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
spellingShingle |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry Connelly, Michael J. |
title_short |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
title_full |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
title_fullStr |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
title_full_unstemmed |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
title_sort |
Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry |
author |
Connelly, Michael J. |
author_facet |
Connelly, Michael J. Galeti, José Henrique Kitano, Cláudio [UNESP] |
author_role |
author |
author2 |
Galeti, José Henrique Kitano, Cláudio [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
University of Limerick Federal Institute of Mato Grosso do Sul Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Connelly, Michael J. Galeti, José Henrique Kitano, Cláudio [UNESP] |
description |
Laser vibrometry has many applications in non-contact dynamic displacement and vibration measurement. A test beam reflected from a target and a reference beam are combined and detected by a photodiode; the photodetected signal is then processed to determine the target displacement and vibration. This paper describes the use of a 9 kHz measurement bandwidth system, consisting of a Michelson interferometer and self-correcting feedback synthetic-heterodyne signal processing technique, to measure the displacement impulse response of a commercial piezoelectric mirror shifter (PMS), consisting of a mirror mounted on a Piezoelectric transducer and a connecting 50 Ω electrical coaxial cable. The actual non-ideal applied impulse and measured impulse response data were used in conjunction with the instrument variable method to determine a Laplace domain linear transfer function approximation to the actual PMS transfer function. The best transfer function fitting, having a 84% normalized root mean square goodness of fit, was obtained using a 5-th order transfer function having two complex conjugate pole pairs, with associated natural frequencies of 6.29 and 6.79 kHz, and a single real pole. The transfer function zeros consisted of a single complex conjugate zero pair, having an antiresonance frequency of 6.38 kHz and a single real zero. Knowing the analytic transfer function of PMS based nanopositioners is useful for example in the design of closed-loop phase-locked interferometers for wideband sensing. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-15 2021-06-25T11:15:57Z 2021-06-25T11:15:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1364/OSAC.402485 OSA Continuum, v. 3, n. 12, p. 3424-3432, 2020. 2578-7519 http://hdl.handle.net/11449/208668 10.1364/OSAC.402485 2-s2.0-85105689326 2883440351895167 0000-0001-6320-755X |
url |
http://dx.doi.org/10.1364/OSAC.402485 http://hdl.handle.net/11449/208668 |
identifier_str_mv |
OSA Continuum, v. 3, n. 12, p. 3424-3432, 2020. 2578-7519 10.1364/OSAC.402485 2-s2.0-85105689326 2883440351895167 0000-0001-6320-755X |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
OSA Continuum |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3424-3432 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129229442777088 |