A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-642-25085-9_69 http://hdl.handle.net/11449/72816 |
Resumo: | The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag. |
id |
UNSP_80367e2d1f83d3d9f49cd107b414fccf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72816 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approachClassifier decisionsDecision graphsDecision templateEnsemble of classifiersFinal decisionForest classifiersGame strategiesMarkov Random Field modelMultiple classifier systemsMultiple classifiers systemsRandom field modelReal data setsComputer simulationComputer visionForestryImage segmentationPattern recognition systemsClassifiersComputersImage AnalysisOCRPatternsRandom ProcessesSegmentationSimulationVisionThe research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.Institute of Mathematical and Computer Sciences University of São Paulo (ICMC/USP), São Carlos, SPDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, SPComputing Department Federal University of São Carlos (DC/UFSCar), São Carlos, SPDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Ponti Jr., Moacir P.Papa, João Paulo [UNESP]Levada, Alexandre L. M.2014-05-27T11:26:11Z2014-05-27T11:26:11Z2011-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject581-590http://dx.doi.org/10.1007/978-3-642-25085-9_69Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.0302-97431611-3349http://hdl.handle.net/11449/7281610.1007/978-3-642-25085-9_692-s2.0-818552260769039182932747194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/72816Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:42:21.568851Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
title |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
spellingShingle |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach Ponti Jr., Moacir P. Classifier decisions Decision graphs Decision template Ensemble of classifiers Final decision Forest classifiers Game strategies Markov Random Field model Multiple classifier systems Multiple classifiers systems Random field model Real data sets Computer simulation Computer vision Forestry Image segmentation Pattern recognition systems Classifiers Computers Image Analysis OCR Patterns Random Processes Segmentation Simulation Vision |
title_short |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
title_full |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
title_fullStr |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
title_full_unstemmed |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
title_sort |
A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach |
author |
Ponti Jr., Moacir P. |
author_facet |
Ponti Jr., Moacir P. Papa, João Paulo [UNESP] Levada, Alexandre L. M. |
author_role |
author |
author2 |
Papa, João Paulo [UNESP] Levada, Alexandre L. M. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Universidade Federal de São Carlos (UFSCar) |
dc.contributor.author.fl_str_mv |
Ponti Jr., Moacir P. Papa, João Paulo [UNESP] Levada, Alexandre L. M. |
dc.subject.por.fl_str_mv |
Classifier decisions Decision graphs Decision template Ensemble of classifiers Final decision Forest classifiers Game strategies Markov Random Field model Multiple classifier systems Multiple classifiers systems Random field model Real data sets Computer simulation Computer vision Forestry Image segmentation Pattern recognition systems Classifiers Computers Image Analysis OCR Patterns Random Processes Segmentation Simulation Vision |
topic |
Classifier decisions Decision graphs Decision template Ensemble of classifiers Final decision Forest classifiers Game strategies Markov Random Field model Multiple classifier systems Multiple classifiers systems Random field model Real data sets Computer simulation Computer vision Forestry Image segmentation Pattern recognition systems Classifiers Computers Image Analysis OCR Patterns Random Processes Segmentation Simulation Vision |
description |
The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11-28 2014-05-27T11:26:11Z 2014-05-27T11:26:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-642-25085-9_69 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590. 0302-9743 1611-3349 http://hdl.handle.net/11449/72816 10.1007/978-3-642-25085-9_69 2-s2.0-81855226076 9039182932747194 |
url |
http://dx.doi.org/10.1007/978-3-642-25085-9_69 http://hdl.handle.net/11449/72816 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590. 0302-9743 1611-3349 10.1007/978-3-642-25085-9_69 2-s2.0-81855226076 9039182932747194 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
581-590 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129349108367360 |