A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach

Detalhes bibliográficos
Autor(a) principal: Ponti Jr., Moacir P.
Data de Publicação: 2011
Outros Autores: Papa, João Paulo [UNESP], Levada, Alexandre L. M.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-642-25085-9_69
http://hdl.handle.net/11449/72816
Resumo: The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
id UNSP_80367e2d1f83d3d9f49cd107b414fccf
oai_identifier_str oai:repositorio.unesp.br:11449/72816
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approachClassifier decisionsDecision graphsDecision templateEnsemble of classifiersFinal decisionForest classifiersGame strategiesMarkov Random Field modelMultiple classifier systemsMultiple classifiers systemsRandom field modelReal data setsComputer simulationComputer visionForestryImage segmentationPattern recognition systemsClassifiersComputersImage AnalysisOCRPatternsRandom ProcessesSegmentationSimulationVisionThe research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.Institute of Mathematical and Computer Sciences University of São Paulo (ICMC/USP), São Carlos, SPDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, SPComputing Department Federal University of São Carlos (DC/UFSCar), São Carlos, SPDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Ponti Jr., Moacir P.Papa, João Paulo [UNESP]Levada, Alexandre L. M.2014-05-27T11:26:11Z2014-05-27T11:26:11Z2011-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject581-590http://dx.doi.org/10.1007/978-3-642-25085-9_69Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.0302-97431611-3349http://hdl.handle.net/11449/7281610.1007/978-3-642-25085-9_692-s2.0-818552260769039182932747194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/72816Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:42:21.568851Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
title A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
spellingShingle A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
Ponti Jr., Moacir P.
Classifier decisions
Decision graphs
Decision template
Ensemble of classifiers
Final decision
Forest classifiers
Game strategies
Markov Random Field model
Multiple classifier systems
Multiple classifiers systems
Random field model
Real data sets
Computer simulation
Computer vision
Forestry
Image segmentation
Pattern recognition systems
Classifiers
Computers
Image Analysis
OCR
Patterns
Random Processes
Segmentation
Simulation
Vision
title_short A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
title_full A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
title_fullStr A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
title_full_unstemmed A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
title_sort A Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
author Ponti Jr., Moacir P.
author_facet Ponti Jr., Moacir P.
Papa, João Paulo [UNESP]
Levada, Alexandre L. M.
author_role author
author2 Papa, João Paulo [UNESP]
Levada, Alexandre L. M.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Ponti Jr., Moacir P.
Papa, João Paulo [UNESP]
Levada, Alexandre L. M.
dc.subject.por.fl_str_mv Classifier decisions
Decision graphs
Decision template
Ensemble of classifiers
Final decision
Forest classifiers
Game strategies
Markov Random Field model
Multiple classifier systems
Multiple classifiers systems
Random field model
Real data sets
Computer simulation
Computer vision
Forestry
Image segmentation
Pattern recognition systems
Classifiers
Computers
Image Analysis
OCR
Patterns
Random Processes
Segmentation
Simulation
Vision
topic Classifier decisions
Decision graphs
Decision template
Ensemble of classifiers
Final decision
Forest classifiers
Game strategies
Markov Random Field model
Multiple classifier systems
Multiple classifiers systems
Random field model
Real data sets
Computer simulation
Computer vision
Forestry
Image segmentation
Pattern recognition systems
Classifiers
Computers
Image Analysis
OCR
Patterns
Random Processes
Segmentation
Simulation
Vision
description The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
publishDate 2011
dc.date.none.fl_str_mv 2011-11-28
2014-05-27T11:26:11Z
2014-05-27T11:26:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-642-25085-9_69
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.
0302-9743
1611-3349
http://hdl.handle.net/11449/72816
10.1007/978-3-642-25085-9_69
2-s2.0-81855226076
9039182932747194
url http://dx.doi.org/10.1007/978-3-642-25085-9_69
http://hdl.handle.net/11449/72816
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.
0302-9743
1611-3349
10.1007/978-3-642-25085-9_69
2-s2.0-81855226076
9039182932747194
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 581-590
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129349108367360