Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films

Detalhes bibliográficos
Autor(a) principal: Rodrigues de Oliveira, Vinicius Jessé [UNESP]
Data de Publicação: 2018
Outros Autores: Assunção da Silva, Edilene [UNESP], Braunger, Maria Luisa, Awada, Hussein, de Santana, Henrique, Hiorns, Roger C., Lartigau-Dagron, Christine, de Almeida Olivati, Clarissa [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.molliq.2018.07.018
http://hdl.handle.net/11449/176594
Resumo: Low-bandgap organic polymers, poly[(4,4‑bis(2‑ethylhexyl)cyclopenta‑[2,1‑b:3,4‑b′]dithiophene)2,6‑diyl‑al‑(2,1,3‑benzothiadiazole)‑4,7‑diyl](PCPDTBT), and poly [(4,4′‑dioctyldithieno[3,2‑b:2′,3′d]silol‑2,6‑diyl)‑alt‑(2,1,3‑benzothiadiazole)‑4,7‑diyl)], (Si-PCPDTBT) were analyzed at the air-water interface forming a Langmuir monolayer. In order to form stable monolayers and to transfer to solid supports, amphiphilic molecules of stearic acid (SA) were mixed with them. For the pristine polymers, the floating monolayers were transferred onto solid substrates via the Langmuir-Schaefer (LS) technique. Surface pressure-area isotherms and compressibility modulus curves demonstrated that the SA incorporation to the polymers at the air-water interface modified the rheological properties of the Langmuir films, since the films became less compressible at higher pressures and there is clear conformational reorganization taking place at intermediary pressures. The UV–Vis absorption also depicted the changes on the overall film morphology by the shift on the maximum absorption bands, and along with cyclic voltammetry curves the absorption spectra made it possible to estimate the energy diagrams for the polymers. Photoconductivity effects were observed for all the sample, among which the pristine polymers fabricated by LS showed better results, suggesting that the organization provided by the Langmuir-Blodgett (LB) technique was not enough to overcome the insulating characteristic of the SA molecules in this specific configuration.
id UNSP_8064b13c2705c11b22906921637c1b3a
oai_identifier_str oai:repositorio.unesp.br:11449/176594
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid filmsEnergy diagramLangmuir filmsLow-bandgap polymersPhotoconductivity effectSolid thin filmsLow-bandgap organic polymers, poly[(4,4‑bis(2‑ethylhexyl)cyclopenta‑[2,1‑b:3,4‑b′]dithiophene)2,6‑diyl‑al‑(2,1,3‑benzothiadiazole)‑4,7‑diyl](PCPDTBT), and poly [(4,4′‑dioctyldithieno[3,2‑b:2′,3′d]silol‑2,6‑diyl)‑alt‑(2,1,3‑benzothiadiazole)‑4,7‑diyl)], (Si-PCPDTBT) were analyzed at the air-water interface forming a Langmuir monolayer. In order to form stable monolayers and to transfer to solid supports, amphiphilic molecules of stearic acid (SA) were mixed with them. For the pristine polymers, the floating monolayers were transferred onto solid substrates via the Langmuir-Schaefer (LS) technique. Surface pressure-area isotherms and compressibility modulus curves demonstrated that the SA incorporation to the polymers at the air-water interface modified the rheological properties of the Langmuir films, since the films became less compressible at higher pressures and there is clear conformational reorganization taking place at intermediary pressures. The UV–Vis absorption also depicted the changes on the overall film morphology by the shift on the maximum absorption bands, and along with cyclic voltammetry curves the absorption spectra made it possible to estimate the energy diagrams for the polymers. Photoconductivity effects were observed for all the sample, among which the pristine polymers fabricated by LS showed better results, suggesting that the organization provided by the Langmuir-Blodgett (LB) technique was not enough to overcome the insulating characteristic of the SA molecules in this specific configuration.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Laboratório de Optoeletrônica e Filmes Finos Departamento de Física Faculdade de Ciências e Tecnologia UNESP, Rua Roberto Simonsen, 305Instituto de Física “Gleb Wataghin” Departamento de Física Aplicada Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade UniversitáriaCNRS/Univ Pau & Pays ‘Adour Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les MateriauxCentro de Ciências Exatas Departamento de Química Universidade Estadual de LondrinaLaboratório de Optoeletrônica e Filmes Finos Departamento de Física Faculdade de Ciências e Tecnologia UNESP, Rua Roberto Simonsen, 305FAPESP: 2010/20094-1Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les MateriauxUniversidade Estadual de Londrina (UEL)Rodrigues de Oliveira, Vinicius Jessé [UNESP]Assunção da Silva, Edilene [UNESP]Braunger, Maria LuisaAwada, Husseinde Santana, HenriqueHiorns, Roger C.Lartigau-Dagron, Christinede Almeida Olivati, Clarissa [UNESP]2018-12-11T17:21:39Z2018-12-11T17:21:39Z2018-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article114-121application/pdfhttp://dx.doi.org/10.1016/j.molliq.2018.07.018Journal of Molecular Liquids, v. 268, p. 114-121.0167-7322http://hdl.handle.net/11449/17659410.1016/j.molliq.2018.07.0182-s2.0-850499000632-s2.0-85049900063.pdf98222128086514150000-0002-0114-6795Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Molecular Liquids0,849info:eu-repo/semantics/openAccess2024-06-19T12:44:22Zoai:repositorio.unesp.br:11449/176594Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:11:42.049761Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
title Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
spellingShingle Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
Rodrigues de Oliveira, Vinicius Jessé [UNESP]
Energy diagram
Langmuir films
Low-bandgap polymers
Photoconductivity effect
Solid thin films
title_short Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
title_full Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
title_fullStr Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
title_full_unstemmed Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
title_sort Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
author Rodrigues de Oliveira, Vinicius Jessé [UNESP]
author_facet Rodrigues de Oliveira, Vinicius Jessé [UNESP]
Assunção da Silva, Edilene [UNESP]
Braunger, Maria Luisa
Awada, Hussein
de Santana, Henrique
Hiorns, Roger C.
Lartigau-Dagron, Christine
de Almeida Olivati, Clarissa [UNESP]
author_role author
author2 Assunção da Silva, Edilene [UNESP]
Braunger, Maria Luisa
Awada, Hussein
de Santana, Henrique
Hiorns, Roger C.
Lartigau-Dagron, Christine
de Almeida Olivati, Clarissa [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Materiaux
Universidade Estadual de Londrina (UEL)
dc.contributor.author.fl_str_mv Rodrigues de Oliveira, Vinicius Jessé [UNESP]
Assunção da Silva, Edilene [UNESP]
Braunger, Maria Luisa
Awada, Hussein
de Santana, Henrique
Hiorns, Roger C.
Lartigau-Dagron, Christine
de Almeida Olivati, Clarissa [UNESP]
dc.subject.por.fl_str_mv Energy diagram
Langmuir films
Low-bandgap polymers
Photoconductivity effect
Solid thin films
topic Energy diagram
Langmuir films
Low-bandgap polymers
Photoconductivity effect
Solid thin films
description Low-bandgap organic polymers, poly[(4,4‑bis(2‑ethylhexyl)cyclopenta‑[2,1‑b:3,4‑b′]dithiophene)2,6‑diyl‑al‑(2,1,3‑benzothiadiazole)‑4,7‑diyl](PCPDTBT), and poly [(4,4′‑dioctyldithieno[3,2‑b:2′,3′d]silol‑2,6‑diyl)‑alt‑(2,1,3‑benzothiadiazole)‑4,7‑diyl)], (Si-PCPDTBT) were analyzed at the air-water interface forming a Langmuir monolayer. In order to form stable monolayers and to transfer to solid supports, amphiphilic molecules of stearic acid (SA) were mixed with them. For the pristine polymers, the floating monolayers were transferred onto solid substrates via the Langmuir-Schaefer (LS) technique. Surface pressure-area isotherms and compressibility modulus curves demonstrated that the SA incorporation to the polymers at the air-water interface modified the rheological properties of the Langmuir films, since the films became less compressible at higher pressures and there is clear conformational reorganization taking place at intermediary pressures. The UV–Vis absorption also depicted the changes on the overall film morphology by the shift on the maximum absorption bands, and along with cyclic voltammetry curves the absorption spectra made it possible to estimate the energy diagrams for the polymers. Photoconductivity effects were observed for all the sample, among which the pristine polymers fabricated by LS showed better results, suggesting that the organization provided by the Langmuir-Blodgett (LB) technique was not enough to overcome the insulating characteristic of the SA molecules in this specific configuration.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:21:39Z
2018-12-11T17:21:39Z
2018-10-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.molliq.2018.07.018
Journal of Molecular Liquids, v. 268, p. 114-121.
0167-7322
http://hdl.handle.net/11449/176594
10.1016/j.molliq.2018.07.018
2-s2.0-85049900063
2-s2.0-85049900063.pdf
9822212808651415
0000-0002-0114-6795
url http://dx.doi.org/10.1016/j.molliq.2018.07.018
http://hdl.handle.net/11449/176594
identifier_str_mv Journal of Molecular Liquids, v. 268, p. 114-121.
0167-7322
10.1016/j.molliq.2018.07.018
2-s2.0-85049900063
2-s2.0-85049900063.pdf
9822212808651415
0000-0002-0114-6795
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Molecular Liquids
0,849
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 114-121
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128477892706304