Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.molliq.2018.07.018 http://hdl.handle.net/11449/176594 |
Resumo: | Low-bandgap organic polymers, poly[(4,4‑bis(2‑ethylhexyl)cyclopenta‑[2,1‑b:3,4‑b′]dithiophene)2,6‑diyl‑al‑(2,1,3‑benzothiadiazole)‑4,7‑diyl](PCPDTBT), and poly [(4,4′‑dioctyldithieno[3,2‑b:2′,3′d]silol‑2,6‑diyl)‑alt‑(2,1,3‑benzothiadiazole)‑4,7‑diyl)], (Si-PCPDTBT) were analyzed at the air-water interface forming a Langmuir monolayer. In order to form stable monolayers and to transfer to solid supports, amphiphilic molecules of stearic acid (SA) were mixed with them. For the pristine polymers, the floating monolayers were transferred onto solid substrates via the Langmuir-Schaefer (LS) technique. Surface pressure-area isotherms and compressibility modulus curves demonstrated that the SA incorporation to the polymers at the air-water interface modified the rheological properties of the Langmuir films, since the films became less compressible at higher pressures and there is clear conformational reorganization taking place at intermediary pressures. The UV–Vis absorption also depicted the changes on the overall film morphology by the shift on the maximum absorption bands, and along with cyclic voltammetry curves the absorption spectra made it possible to estimate the energy diagrams for the polymers. Photoconductivity effects were observed for all the sample, among which the pristine polymers fabricated by LS showed better results, suggesting that the organization provided by the Langmuir-Blodgett (LB) technique was not enough to overcome the insulating characteristic of the SA molecules in this specific configuration. |
id |
UNSP_8064b13c2705c11b22906921637c1b3a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/176594 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid filmsEnergy diagramLangmuir filmsLow-bandgap polymersPhotoconductivity effectSolid thin filmsLow-bandgap organic polymers, poly[(4,4‑bis(2‑ethylhexyl)cyclopenta‑[2,1‑b:3,4‑b′]dithiophene)2,6‑diyl‑al‑(2,1,3‑benzothiadiazole)‑4,7‑diyl](PCPDTBT), and poly [(4,4′‑dioctyldithieno[3,2‑b:2′,3′d]silol‑2,6‑diyl)‑alt‑(2,1,3‑benzothiadiazole)‑4,7‑diyl)], (Si-PCPDTBT) were analyzed at the air-water interface forming a Langmuir monolayer. In order to form stable monolayers and to transfer to solid supports, amphiphilic molecules of stearic acid (SA) were mixed with them. For the pristine polymers, the floating monolayers were transferred onto solid substrates via the Langmuir-Schaefer (LS) technique. Surface pressure-area isotherms and compressibility modulus curves demonstrated that the SA incorporation to the polymers at the air-water interface modified the rheological properties of the Langmuir films, since the films became less compressible at higher pressures and there is clear conformational reorganization taking place at intermediary pressures. The UV–Vis absorption also depicted the changes on the overall film morphology by the shift on the maximum absorption bands, and along with cyclic voltammetry curves the absorption spectra made it possible to estimate the energy diagrams for the polymers. Photoconductivity effects were observed for all the sample, among which the pristine polymers fabricated by LS showed better results, suggesting that the organization provided by the Langmuir-Blodgett (LB) technique was not enough to overcome the insulating characteristic of the SA molecules in this specific configuration.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Laboratório de Optoeletrônica e Filmes Finos Departamento de Física Faculdade de Ciências e Tecnologia UNESP, Rua Roberto Simonsen, 305Instituto de Física “Gleb Wataghin” Departamento de Física Aplicada Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade UniversitáriaCNRS/Univ Pau & Pays ‘Adour Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les MateriauxCentro de Ciências Exatas Departamento de Química Universidade Estadual de LondrinaLaboratório de Optoeletrônica e Filmes Finos Departamento de Física Faculdade de Ciências e Tecnologia UNESP, Rua Roberto Simonsen, 305FAPESP: 2010/20094-1Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les MateriauxUniversidade Estadual de Londrina (UEL)Rodrigues de Oliveira, Vinicius Jessé [UNESP]Assunção da Silva, Edilene [UNESP]Braunger, Maria LuisaAwada, Husseinde Santana, HenriqueHiorns, Roger C.Lartigau-Dagron, Christinede Almeida Olivati, Clarissa [UNESP]2018-12-11T17:21:39Z2018-12-11T17:21:39Z2018-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article114-121application/pdfhttp://dx.doi.org/10.1016/j.molliq.2018.07.018Journal of Molecular Liquids, v. 268, p. 114-121.0167-7322http://hdl.handle.net/11449/17659410.1016/j.molliq.2018.07.0182-s2.0-850499000632-s2.0-85049900063.pdf98222128086514150000-0002-0114-6795Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Molecular Liquids0,849info:eu-repo/semantics/openAccess2024-06-19T12:44:22Zoai:repositorio.unesp.br:11449/176594Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:11:42.049761Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
title |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
spellingShingle |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films Rodrigues de Oliveira, Vinicius Jessé [UNESP] Energy diagram Langmuir films Low-bandgap polymers Photoconductivity effect Solid thin films |
title_short |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
title_full |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
title_fullStr |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
title_full_unstemmed |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
title_sort |
Molecular organization relationship of low-bandgap polymers at the air-water interface and in solid films |
author |
Rodrigues de Oliveira, Vinicius Jessé [UNESP] |
author_facet |
Rodrigues de Oliveira, Vinicius Jessé [UNESP] Assunção da Silva, Edilene [UNESP] Braunger, Maria Luisa Awada, Hussein de Santana, Henrique Hiorns, Roger C. Lartigau-Dagron, Christine de Almeida Olivati, Clarissa [UNESP] |
author_role |
author |
author2 |
Assunção da Silva, Edilene [UNESP] Braunger, Maria Luisa Awada, Hussein de Santana, Henrique Hiorns, Roger C. Lartigau-Dagron, Christine de Almeida Olivati, Clarissa [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Materiaux Universidade Estadual de Londrina (UEL) |
dc.contributor.author.fl_str_mv |
Rodrigues de Oliveira, Vinicius Jessé [UNESP] Assunção da Silva, Edilene [UNESP] Braunger, Maria Luisa Awada, Hussein de Santana, Henrique Hiorns, Roger C. Lartigau-Dagron, Christine de Almeida Olivati, Clarissa [UNESP] |
dc.subject.por.fl_str_mv |
Energy diagram Langmuir films Low-bandgap polymers Photoconductivity effect Solid thin films |
topic |
Energy diagram Langmuir films Low-bandgap polymers Photoconductivity effect Solid thin films |
description |
Low-bandgap organic polymers, poly[(4,4‑bis(2‑ethylhexyl)cyclopenta‑[2,1‑b:3,4‑b′]dithiophene)2,6‑diyl‑al‑(2,1,3‑benzothiadiazole)‑4,7‑diyl](PCPDTBT), and poly [(4,4′‑dioctyldithieno[3,2‑b:2′,3′d]silol‑2,6‑diyl)‑alt‑(2,1,3‑benzothiadiazole)‑4,7‑diyl)], (Si-PCPDTBT) were analyzed at the air-water interface forming a Langmuir monolayer. In order to form stable monolayers and to transfer to solid supports, amphiphilic molecules of stearic acid (SA) were mixed with them. For the pristine polymers, the floating monolayers were transferred onto solid substrates via the Langmuir-Schaefer (LS) technique. Surface pressure-area isotherms and compressibility modulus curves demonstrated that the SA incorporation to the polymers at the air-water interface modified the rheological properties of the Langmuir films, since the films became less compressible at higher pressures and there is clear conformational reorganization taking place at intermediary pressures. The UV–Vis absorption also depicted the changes on the overall film morphology by the shift on the maximum absorption bands, and along with cyclic voltammetry curves the absorption spectra made it possible to estimate the energy diagrams for the polymers. Photoconductivity effects were observed for all the sample, among which the pristine polymers fabricated by LS showed better results, suggesting that the organization provided by the Langmuir-Blodgett (LB) technique was not enough to overcome the insulating characteristic of the SA molecules in this specific configuration. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:21:39Z 2018-12-11T17:21:39Z 2018-10-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.molliq.2018.07.018 Journal of Molecular Liquids, v. 268, p. 114-121. 0167-7322 http://hdl.handle.net/11449/176594 10.1016/j.molliq.2018.07.018 2-s2.0-85049900063 2-s2.0-85049900063.pdf 9822212808651415 0000-0002-0114-6795 |
url |
http://dx.doi.org/10.1016/j.molliq.2018.07.018 http://hdl.handle.net/11449/176594 |
identifier_str_mv |
Journal of Molecular Liquids, v. 268, p. 114-121. 0167-7322 10.1016/j.molliq.2018.07.018 2-s2.0-85049900063 2-s2.0-85049900063.pdf 9822212808651415 0000-0002-0114-6795 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Molecular Liquids 0,849 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
114-121 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128477892706304 |