Synchronization and bifurcation in an economic model

Detalhes bibliográficos
Autor(a) principal: Camargo, Victor E.
Data de Publicação: 2022
Outros Autores: Amaral, Amaury S., Crepaldi, Antônio F. [UNESP], Ferreira, Fernando F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1063/5.0104017
http://hdl.handle.net/11449/247786
Resumo: We study the synchronization of two coupled idealized economies. In the present work, we consider a recently developed economic system that shows a richness of dynamical behavior. By means of the Lyapunov exponents, we analyze that there is overly complex behavior in the transitions in the dynamics of an isolated economy, oscillating between chaotic attractors and limit cycles. Then, for two coupled economies, we analyze the synchronization states for the space of all control parameters as a function of the network coupling parameter. Interestingly, we have evidenced that there is a broad region of fully synchronized states and as we increase the coupling, some phenomena such as a smooth and intermittent loss in synchronization emerge. In the same way, we observe phase synchronization for one of the control parameters. Ultimately, in order to confirm this loss of synchronization, we inspect the stability of synchronized states through the master stability function method for some control parameters. Here, we corroborate what was previously observed, the unexpected vast range of control parameter values of instability corresponding to desynchronization.
id UNSP_80b808bf9c6f45db695dfbf8b48d8bca
oai_identifier_str oai:repositorio.unesp.br:11449/247786
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Synchronization and bifurcation in an economic modelWe study the synchronization of two coupled idealized economies. In the present work, we consider a recently developed economic system that shows a richness of dynamical behavior. By means of the Lyapunov exponents, we analyze that there is overly complex behavior in the transitions in the dynamics of an isolated economy, oscillating between chaotic attractors and limit cycles. Then, for two coupled economies, we analyze the synchronization states for the space of all control parameters as a function of the network coupling parameter. Interestingly, we have evidenced that there is a broad region of fully synchronized states and as we increase the coupling, some phenomena such as a smooth and intermittent loss in synchronization emerge. In the same way, we observe phase synchronization for one of the control parameters. Ultimately, in order to confirm this loss of synchronization, we inspect the stability of synchronized states through the master stability function method for some control parameters. Here, we corroborate what was previously observed, the unexpected vast range of control parameter values of instability corresponding to desynchronization.Department of Physics-FFCLRP University of São Paulo, SPProduction Engineering Department-FEB São Paulo State University (UNESP), SPProduction Engineering Department-FEB São Paulo State University (UNESP), SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Camargo, Victor E.Amaral, Amaury S.Crepaldi, Antônio F. [UNESP]Ferreira, Fernando F.2023-07-29T13:25:50Z2023-07-29T13:25:50Z2022-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1063/5.0104017Chaos, v. 32, n. 10, 2022.1089-76821054-1500http://hdl.handle.net/11449/24778610.1063/5.01040172-s2.0-85140443083Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaosinfo:eu-repo/semantics/openAccess2024-06-28T13:18:08Zoai:repositorio.unesp.br:11449/247786Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:12:22.349748Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Synchronization and bifurcation in an economic model
title Synchronization and bifurcation in an economic model
spellingShingle Synchronization and bifurcation in an economic model
Camargo, Victor E.
title_short Synchronization and bifurcation in an economic model
title_full Synchronization and bifurcation in an economic model
title_fullStr Synchronization and bifurcation in an economic model
title_full_unstemmed Synchronization and bifurcation in an economic model
title_sort Synchronization and bifurcation in an economic model
author Camargo, Victor E.
author_facet Camargo, Victor E.
Amaral, Amaury S.
Crepaldi, Antônio F. [UNESP]
Ferreira, Fernando F.
author_role author
author2 Amaral, Amaury S.
Crepaldi, Antônio F. [UNESP]
Ferreira, Fernando F.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Camargo, Victor E.
Amaral, Amaury S.
Crepaldi, Antônio F. [UNESP]
Ferreira, Fernando F.
description We study the synchronization of two coupled idealized economies. In the present work, we consider a recently developed economic system that shows a richness of dynamical behavior. By means of the Lyapunov exponents, we analyze that there is overly complex behavior in the transitions in the dynamics of an isolated economy, oscillating between chaotic attractors and limit cycles. Then, for two coupled economies, we analyze the synchronization states for the space of all control parameters as a function of the network coupling parameter. Interestingly, we have evidenced that there is a broad region of fully synchronized states and as we increase the coupling, some phenomena such as a smooth and intermittent loss in synchronization emerge. In the same way, we observe phase synchronization for one of the control parameters. Ultimately, in order to confirm this loss of synchronization, we inspect the stability of synchronized states through the master stability function method for some control parameters. Here, we corroborate what was previously observed, the unexpected vast range of control parameter values of instability corresponding to desynchronization.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-01
2023-07-29T13:25:50Z
2023-07-29T13:25:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1063/5.0104017
Chaos, v. 32, n. 10, 2022.
1089-7682
1054-1500
http://hdl.handle.net/11449/247786
10.1063/5.0104017
2-s2.0-85140443083
url http://dx.doi.org/10.1063/5.0104017
http://hdl.handle.net/11449/247786
identifier_str_mv Chaos, v. 32, n. 10, 2022.
1089-7682
1054-1500
10.1063/5.0104017
2-s2.0-85140443083
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128772301389824