Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-61401-0_50 http://hdl.handle.net/11449/233059 |
Resumo: | Select from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network. |
id |
UNSP_8209dd92e6efb64474664bcbe85a7657 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/233059 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFIFeature selectionIntrusion detectionMachine learningSelect from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Computing São Paulo State UniversityCollege of TechnologyDepartment of Computing São Paulo State UniversityFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2017/22905-6FAPESP: 2019/07665-4Universidade Estadual Paulista (UNESP)College of TechnologyLucas, Thiago José [UNESP]Tojeiro, Carlos Alexandre CarvalhoPires, Rafael Gonçalves [UNESP]da Costa, Kelton Augusto Pontara [UNESP]Papa, João Paulo [UNESP]2022-05-01T01:25:45Z2022-05-01T01:25:45Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject535-546http://dx.doi.org/10.1007/978-3-030-61401-0_50Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546.1611-33490302-9743http://hdl.handle.net/11449/23305910.1007/978-3-030-61401-0_502-s2.0-85096574140Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/233059Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:16:32.710562Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
title |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
spellingShingle |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI Lucas, Thiago José [UNESP] Feature selection Intrusion detection Machine learning |
title_short |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
title_full |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
title_fullStr |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
title_full_unstemmed |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
title_sort |
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI |
author |
Lucas, Thiago José [UNESP] |
author_facet |
Lucas, Thiago José [UNESP] Tojeiro, Carlos Alexandre Carvalho Pires, Rafael Gonçalves [UNESP] da Costa, Kelton Augusto Pontara [UNESP] Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Tojeiro, Carlos Alexandre Carvalho Pires, Rafael Gonçalves [UNESP] da Costa, Kelton Augusto Pontara [UNESP] Papa, João Paulo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) College of Technology |
dc.contributor.author.fl_str_mv |
Lucas, Thiago José [UNESP] Tojeiro, Carlos Alexandre Carvalho Pires, Rafael Gonçalves [UNESP] da Costa, Kelton Augusto Pontara [UNESP] Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Feature selection Intrusion detection Machine learning |
topic |
Feature selection Intrusion detection Machine learning |
description |
Select from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2022-05-01T01:25:45Z 2022-05-01T01:25:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-61401-0_50 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546. 1611-3349 0302-9743 http://hdl.handle.net/11449/233059 10.1007/978-3-030-61401-0_50 2-s2.0-85096574140 |
url |
http://dx.doi.org/10.1007/978-3-030-61401-0_50 http://hdl.handle.net/11449/233059 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546. 1611-3349 0302-9743 10.1007/978-3-030-61401-0_50 2-s2.0-85096574140 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
535-546 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128782064680960 |