Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI

Detalhes bibliográficos
Autor(a) principal: Lucas, Thiago José [UNESP]
Data de Publicação: 2020
Outros Autores: Tojeiro, Carlos Alexandre Carvalho, Pires, Rafael Gonçalves [UNESP], da Costa, Kelton Augusto Pontara [UNESP], Papa, João Paulo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-030-61401-0_50
http://hdl.handle.net/11449/233059
Resumo: Select from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network.
id UNSP_8209dd92e6efb64474664bcbe85a7657
oai_identifier_str oai:repositorio.unesp.br:11449/233059
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFIFeature selectionIntrusion detectionMachine learningSelect from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Computing São Paulo State UniversityCollege of TechnologyDepartment of Computing São Paulo State UniversityFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2017/22905-6FAPESP: 2019/07665-4Universidade Estadual Paulista (UNESP)College of TechnologyLucas, Thiago José [UNESP]Tojeiro, Carlos Alexandre CarvalhoPires, Rafael Gonçalves [UNESP]da Costa, Kelton Augusto Pontara [UNESP]Papa, João Paulo [UNESP]2022-05-01T01:25:45Z2022-05-01T01:25:45Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject535-546http://dx.doi.org/10.1007/978-3-030-61401-0_50Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546.1611-33490302-9743http://hdl.handle.net/11449/23305910.1007/978-3-030-61401-0_502-s2.0-85096574140Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/233059Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:16:32.710562Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
title Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
spellingShingle Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
Lucas, Thiago José [UNESP]
Feature selection
Intrusion detection
Machine learning
title_short Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
title_full Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
title_fullStr Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
title_full_unstemmed Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
title_sort Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI
author Lucas, Thiago José [UNESP]
author_facet Lucas, Thiago José [UNESP]
Tojeiro, Carlos Alexandre Carvalho
Pires, Rafael Gonçalves [UNESP]
da Costa, Kelton Augusto Pontara [UNESP]
Papa, João Paulo [UNESP]
author_role author
author2 Tojeiro, Carlos Alexandre Carvalho
Pires, Rafael Gonçalves [UNESP]
da Costa, Kelton Augusto Pontara [UNESP]
Papa, João Paulo [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
College of Technology
dc.contributor.author.fl_str_mv Lucas, Thiago José [UNESP]
Tojeiro, Carlos Alexandre Carvalho
Pires, Rafael Gonçalves [UNESP]
da Costa, Kelton Augusto Pontara [UNESP]
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Feature selection
Intrusion detection
Machine learning
topic Feature selection
Intrusion detection
Machine learning
description Select from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2022-05-01T01:25:45Z
2022-05-01T01:25:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-030-61401-0_50
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546.
1611-3349
0302-9743
http://hdl.handle.net/11449/233059
10.1007/978-3-030-61401-0_50
2-s2.0-85096574140
url http://dx.doi.org/10.1007/978-3-030-61401-0_50
http://hdl.handle.net/11449/233059
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546.
1611-3349
0302-9743
10.1007/978-3-030-61401-0_50
2-s2.0-85096574140
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 535-546
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128782064680960