Smoothing by cubic spline modified applied to solve inverse thermal problem

Detalhes bibliográficos
Autor(a) principal: Kubo, Leticia Hiromi [UNESP]
Data de Publicação: 2018
Outros Autores: de Oliveira, Juliana [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40314-016-0385-x
http://hdl.handle.net/11449/176358
Resumo: This paper presents an alternative to cubic spline regularization and its weighted form applied in solving inverse thermal problems. The inverse heat transfer problems are classified as ill-posed, that is, the solution may become unstable, mainly because they are sensitive to random errors deriving from the input data, necessitating a regularization method to soften these effects. The smoothing technique proposed by cubic spline regularization ensures that the global data tend to be more stable, with fewer data oscillations and dependent on a single arbitrary parameter input. It also shows that the weighted cubic spline is able to enhance filter action. The methods have been implemented in order for the search engine to optimize the choice of parameters and weight and, thus, the smoothing gains more flexibility and accuracy. The simulated and experimental tests confirm that the techniques are effective in reducing the amplified noise by inverse thermal problem presented.
id UNSP_82c77185fda35303a3b6433f12f7dfdb
oai_identifier_str oai:repositorio.unesp.br:11449/176358
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Smoothing by cubic spline modified applied to solve inverse thermal problemCubic splineInverse problemPonderationRegularizationThis paper presents an alternative to cubic spline regularization and its weighted form applied in solving inverse thermal problems. The inverse heat transfer problems are classified as ill-posed, that is, the solution may become unstable, mainly because they are sensitive to random errors deriving from the input data, necessitating a regularization method to soften these effects. The smoothing technique proposed by cubic spline regularization ensures that the global data tend to be more stable, with fewer data oscillations and dependent on a single arbitrary parameter input. It also shows that the weighted cubic spline is able to enhance filter action. The methods have been implemented in order for the search engine to optimize the choice of parameters and weight and, thus, the smoothing gains more flexibility and accuracy. The simulated and experimental tests confirm that the techniques are effective in reducing the amplified noise by inverse thermal problem presented.Department of Biological Sciences Faculty of Sciences and Letters of Assis FCLA University of São Paulo State UNESP, Av. Dom Antonio 2100Department of Biological Sciences Faculty of Sciences and Letters of Assis FCLA University of São Paulo State UNESP, Av. Dom Antonio 2100Universidade Estadual Paulista (Unesp)Kubo, Leticia Hiromi [UNESP]de Oliveira, Juliana [UNESP]2018-12-11T17:20:28Z2018-12-11T17:20:28Z2018-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1162-1174application/pdfhttp://dx.doi.org/10.1007/s40314-016-0385-xComputational and Applied Mathematics, v. 37, n. 2, p. 1162-1174, 2018.1807-03020101-8205http://hdl.handle.net/11449/17635810.1007/s40314-016-0385-x2-s2.0-850473837492-s2.0-85047383749.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematics0,272info:eu-repo/semantics/openAccess2024-06-13T17:38:06Zoai:repositorio.unesp.br:11449/176358Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:14:13.669535Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Smoothing by cubic spline modified applied to solve inverse thermal problem
title Smoothing by cubic spline modified applied to solve inverse thermal problem
spellingShingle Smoothing by cubic spline modified applied to solve inverse thermal problem
Kubo, Leticia Hiromi [UNESP]
Cubic spline
Inverse problem
Ponderation
Regularization
title_short Smoothing by cubic spline modified applied to solve inverse thermal problem
title_full Smoothing by cubic spline modified applied to solve inverse thermal problem
title_fullStr Smoothing by cubic spline modified applied to solve inverse thermal problem
title_full_unstemmed Smoothing by cubic spline modified applied to solve inverse thermal problem
title_sort Smoothing by cubic spline modified applied to solve inverse thermal problem
author Kubo, Leticia Hiromi [UNESP]
author_facet Kubo, Leticia Hiromi [UNESP]
de Oliveira, Juliana [UNESP]
author_role author
author2 de Oliveira, Juliana [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Kubo, Leticia Hiromi [UNESP]
de Oliveira, Juliana [UNESP]
dc.subject.por.fl_str_mv Cubic spline
Inverse problem
Ponderation
Regularization
topic Cubic spline
Inverse problem
Ponderation
Regularization
description This paper presents an alternative to cubic spline regularization and its weighted form applied in solving inverse thermal problems. The inverse heat transfer problems are classified as ill-posed, that is, the solution may become unstable, mainly because they are sensitive to random errors deriving from the input data, necessitating a regularization method to soften these effects. The smoothing technique proposed by cubic spline regularization ensures that the global data tend to be more stable, with fewer data oscillations and dependent on a single arbitrary parameter input. It also shows that the weighted cubic spline is able to enhance filter action. The methods have been implemented in order for the search engine to optimize the choice of parameters and weight and, thus, the smoothing gains more flexibility and accuracy. The simulated and experimental tests confirm that the techniques are effective in reducing the amplified noise by inverse thermal problem presented.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:20:28Z
2018-12-11T17:20:28Z
2018-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40314-016-0385-x
Computational and Applied Mathematics, v. 37, n. 2, p. 1162-1174, 2018.
1807-0302
0101-8205
http://hdl.handle.net/11449/176358
10.1007/s40314-016-0385-x
2-s2.0-85047383749
2-s2.0-85047383749.pdf
url http://dx.doi.org/10.1007/s40314-016-0385-x
http://hdl.handle.net/11449/176358
identifier_str_mv Computational and Applied Mathematics, v. 37, n. 2, p. 1162-1174, 2018.
1807-0302
0101-8205
10.1007/s40314-016-0385-x
2-s2.0-85047383749
2-s2.0-85047383749.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational and Applied Mathematics
0,272
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1162-1174
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128485490688000