Estimating outcomes in newborn infants using fuzzy logic
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/0103-058220143228413 http://hdl.handle.net/11449/114210 |
Resumo: | OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use. |
id |
UNSP_8335b14d6feaef218eec888091d400d7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/114210 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estimating outcomes in newborn infants using fuzzy logicEstimando el desenlace en el recién nacido usando lógica fuzzyEstimando o desfecho no recém-nascido usando lógica fuzzymodels, theoreticalfuzzy logicinfant, newbornrisk factorsmodelos teóricoslógica fuzzyrecém-nascidofatores de riscoOBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use.OBJETIVO: Construir um modelo linguístico utilizando-se as propriedades da lógica fuzzy para estimar o risco de óbito de recém-nascidos internados em Unidade de Terapia Intensiva Neonatal (UTIN). MÉTODOS: Modelo computacional utilizando a lógica fuzzy. As variáveis de entrada do modelo foram peso ao nascer, idade gestacional, Apgar de 5º minuto e fração inspirada de oxigênio de recém-nascidos internados em uma UTIN privada de Taubaté, SP. A variável de saída foi risco de óbito, estimado em percentagem. Construíram-se três funções de pertinência para peso ao nascer, idade gestacional e Apgar de 5º minuto e duas para fração inspirada de oxigênio; o risco apresentou cinco funções de pertinência. No modelo, utilizou-se o método de inferência de Mandani pelo progama Matlab(r). Os valores do modelo foram comparados com os fornecidos por especialistas e seu desempenho foi estimado pela curva ROC. RESULTADOS: Incluíram-se 100 recém-nascidos e ocorreram oito óbitos. Para o óbito, a possibilidade média foi de 49,7±29,3% e, para a alta hospitalar, de 24±17,5%. Esses valores são diferentes quando comparados pelo teste t de Student (p<0,001). A correlação foi r=0,80 e o desempenho do modelo foi de 81,9%. CONCLUSÕES: Esse modelo preditivo, não invasivo e de baixo custo financeiro mostrou boa acurácia e pode ser usado em unidades neonatais, dada a facilidade de sua aplicação.OBJETIVO: Construir un modelo lingüístico utilizándose de las propiedades de la lógica fuzzy para estimar el riesgo de óbito de recién nacidos internados en Unidad de Terapia Intensiva Neonatal (UTIN). MÉTODOS: Modelo computacional que se utiliza de la lógica fuzzy. Las variables de entrada del modelo fueron peso al nacer, edad gestacional, Apgar de 5º minuto y fracción inspirada de oxígeno de recién nacidos internados en una UTIN privada de Taubaté, São Paulo (Brasil). La variable de salida fue riesgo de óbito, estimado en porcentaje. Se construyeron tres funciones de pertinencia para peso al nacer, edad gestacional y Apgar de 5º minuto y dos para fracción inspirada de oxígeno; el riesgo presentó cinco funciones de pertinencia. En el modelo se utilizó el método de inferencia de Mandani por el programa Matlab(r). Los valores del modelo fueron comparados con los suministrados por especialistas y su desempeño fue estimado por la curva ROC. RESULTADOS: Se incluyeron a 100 recién nacidos y ocurrieron ocho óbitos. Para el óbito, la posibilidad mediana fue de 49,7±29,3% y, para alta hospitalaria, de 24±17,5%. Esos valores son distintos cuando comparados por la prueba t de Student (p<0,001). La correlación fue r=0,80 y el desempeño del modelo fue de 81,9%. CONCLUSIONES: Ese modelo predictivo, no invasivo y de bajo costo financiero mostró buena precisión y se puede usarlo en unidades neonatales, dada su facilidad de aplicación.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)UnespUniversidade de TaubatéUnespSociedade de Pediatria de São PauloUniversidade Estadual Paulista (Unesp)Universidade de TaubatéChaves, Luciano Eustáquio [UNESP]Nascimento, Luiz Fernando C.2015-02-02T12:39:20Z2015-02-02T12:39:20Z2014-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article164-170application/pdfhttp://dx.doi.org/10.1590/0103-058220143228413Revista Paulista de Pediatria. Sociedade de Pediatria de São Paulo, v. 32, n. 2, p. 164-170, 2014.0103-0582http://hdl.handle.net/11449/11421010.1590/0103-058220143228413S0103-05822014000200164S0103-05822014000200164.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Paulista de Pediatria0,472info:eu-repo/semantics/openAccess2024-07-01T20:32:29Zoai:repositorio.unesp.br:11449/114210Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:40:59.923067Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estimating outcomes in newborn infants using fuzzy logic Estimando el desenlace en el recién nacido usando lógica fuzzy Estimando o desfecho no recém-nascido usando lógica fuzzy |
title |
Estimating outcomes in newborn infants using fuzzy logic |
spellingShingle |
Estimating outcomes in newborn infants using fuzzy logic Chaves, Luciano Eustáquio [UNESP] models, theoretical fuzzy logic infant, newborn risk factors modelos teóricos lógica fuzzy recém-nascido fatores de risco |
title_short |
Estimating outcomes in newborn infants using fuzzy logic |
title_full |
Estimating outcomes in newborn infants using fuzzy logic |
title_fullStr |
Estimating outcomes in newborn infants using fuzzy logic |
title_full_unstemmed |
Estimating outcomes in newborn infants using fuzzy logic |
title_sort |
Estimating outcomes in newborn infants using fuzzy logic |
author |
Chaves, Luciano Eustáquio [UNESP] |
author_facet |
Chaves, Luciano Eustáquio [UNESP] Nascimento, Luiz Fernando C. |
author_role |
author |
author2 |
Nascimento, Luiz Fernando C. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de Taubaté |
dc.contributor.author.fl_str_mv |
Chaves, Luciano Eustáquio [UNESP] Nascimento, Luiz Fernando C. |
dc.subject.por.fl_str_mv |
models, theoretical fuzzy logic infant, newborn risk factors modelos teóricos lógica fuzzy recém-nascido fatores de risco |
topic |
models, theoretical fuzzy logic infant, newborn risk factors modelos teóricos lógica fuzzy recém-nascido fatores de risco |
description |
OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-01 2015-02-02T12:39:20Z 2015-02-02T12:39:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/0103-058220143228413 Revista Paulista de Pediatria. Sociedade de Pediatria de São Paulo, v. 32, n. 2, p. 164-170, 2014. 0103-0582 http://hdl.handle.net/11449/114210 10.1590/0103-058220143228413 S0103-05822014000200164 S0103-05822014000200164.pdf |
url |
http://dx.doi.org/10.1590/0103-058220143228413 http://hdl.handle.net/11449/114210 |
identifier_str_mv |
Revista Paulista de Pediatria. Sociedade de Pediatria de São Paulo, v. 32, n. 2, p. 164-170, 2014. 0103-0582 10.1590/0103-058220143228413 S0103-05822014000200164 S0103-05822014000200164.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Paulista de Pediatria 0,472 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
164-170 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade de Pediatria de São Paulo |
publisher.none.fl_str_mv |
Sociedade de Pediatria de São Paulo |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128550832701440 |