Estimating outcomes in newborn infants using fuzzy logic

Detalhes bibliográficos
Autor(a) principal: Chaves, Luciano Eustáquio [UNESP]
Data de Publicação: 2014
Outros Autores: Nascimento, Luiz Fernando C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/0103-058220143228413
http://hdl.handle.net/11449/114210
Resumo: OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use.
id UNSP_8335b14d6feaef218eec888091d400d7
oai_identifier_str oai:repositorio.unesp.br:11449/114210
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Estimating outcomes in newborn infants using fuzzy logicEstimando el desenlace en el recién nacido usando lógica fuzzyEstimando o desfecho no recém-nascido usando lógica fuzzymodels, theoreticalfuzzy logicinfant, newbornrisk factorsmodelos teóricoslógica fuzzyrecém-nascidofatores de riscoOBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use.OBJETIVO: Construir um modelo linguístico utilizando-se as propriedades da lógica fuzzy para estimar o risco de óbito de recém-nascidos internados em Unidade de Terapia Intensiva Neonatal (UTIN). MÉTODOS: Modelo computacional utilizando a lógica fuzzy. As variáveis de entrada do modelo foram peso ao nascer, idade gestacional, Apgar de 5º minuto e fração inspirada de oxigênio de recém-nascidos internados em uma UTIN privada de Taubaté, SP. A variável de saída foi risco de óbito, estimado em percentagem. Construíram-se três funções de pertinência para peso ao nascer, idade gestacional e Apgar de 5º minuto e duas para fração inspirada de oxigênio; o risco apresentou cinco funções de pertinência. No modelo, utilizou-se o método de inferência de Mandani pelo progama Matlab(r). Os valores do modelo foram comparados com os fornecidos por especialistas e seu desempenho foi estimado pela curva ROC. RESULTADOS: Incluíram-se 100 recém-nascidos e ocorreram oito óbitos. Para o óbito, a possibilidade média foi de 49,7±29,3% e, para a alta hospitalar, de 24±17,5%. Esses valores são diferentes quando comparados pelo teste t de Student (p<0,001). A correlação foi r=0,80 e o desempenho do modelo foi de 81,9%. CONCLUSÕES: Esse modelo preditivo, não invasivo e de baixo custo financeiro mostrou boa acurácia e pode ser usado em unidades neonatais, dada a facilidade de sua aplicação.OBJETIVO: Construir un modelo lingüístico utilizándose de las propiedades de la lógica fuzzy para estimar el riesgo de óbito de recién nacidos internados en Unidad de Terapia Intensiva Neonatal (UTIN). MÉTODOS: Modelo computacional que se utiliza de la lógica fuzzy. Las variables de entrada del modelo fueron peso al nacer, edad gestacional, Apgar de 5º minuto y fracción inspirada de oxígeno de recién nacidos internados en una UTIN privada de Taubaté, São Paulo (Brasil). La variable de salida fue riesgo de óbito, estimado en porcentaje. Se construyeron tres funciones de pertinencia para peso al nacer, edad gestacional y Apgar de 5º minuto y dos para fracción inspirada de oxígeno; el riesgo presentó cinco funciones de pertinencia. En el modelo se utilizó el método de inferencia de Mandani por el programa Matlab(r). Los valores del modelo fueron comparados con los suministrados por especialistas y su desempeño fue estimado por la curva ROC. RESULTADOS: Se incluyeron a 100 recién nacidos y ocurrieron ocho óbitos. Para el óbito, la posibilidad mediana fue de 49,7±29,3% y, para alta hospitalaria, de 24±17,5%. Esos valores son distintos cuando comparados por la prueba t de Student (p<0,001). La correlación fue r=0,80 y el desempeño del modelo fue de 81,9%. CONCLUSIONES: Ese modelo predictivo, no invasivo y de bajo costo financiero mostró buena precisión y se puede usarlo en unidades neonatales, dada su facilidad de aplicación.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)UnespUniversidade de TaubatéUnespSociedade de Pediatria de São PauloUniversidade Estadual Paulista (Unesp)Universidade de TaubatéChaves, Luciano Eustáquio [UNESP]Nascimento, Luiz Fernando C.2015-02-02T12:39:20Z2015-02-02T12:39:20Z2014-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article164-170application/pdfhttp://dx.doi.org/10.1590/0103-058220143228413Revista Paulista de Pediatria. Sociedade de Pediatria de São Paulo, v. 32, n. 2, p. 164-170, 2014.0103-0582http://hdl.handle.net/11449/11421010.1590/0103-058220143228413S0103-05822014000200164S0103-05822014000200164.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Paulista de Pediatria0,472info:eu-repo/semantics/openAccess2024-07-01T20:32:29Zoai:repositorio.unesp.br:11449/114210Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:40:59.923067Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Estimating outcomes in newborn infants using fuzzy logic
Estimando el desenlace en el recién nacido usando lógica fuzzy
Estimando o desfecho no recém-nascido usando lógica fuzzy
title Estimating outcomes in newborn infants using fuzzy logic
spellingShingle Estimating outcomes in newborn infants using fuzzy logic
Chaves, Luciano Eustáquio [UNESP]
models, theoretical
fuzzy logic
infant, newborn
risk factors
modelos teóricos
lógica fuzzy
recém-nascido
fatores de risco
title_short Estimating outcomes in newborn infants using fuzzy logic
title_full Estimating outcomes in newborn infants using fuzzy logic
title_fullStr Estimating outcomes in newborn infants using fuzzy logic
title_full_unstemmed Estimating outcomes in newborn infants using fuzzy logic
title_sort Estimating outcomes in newborn infants using fuzzy logic
author Chaves, Luciano Eustáquio [UNESP]
author_facet Chaves, Luciano Eustáquio [UNESP]
Nascimento, Luiz Fernando C.
author_role author
author2 Nascimento, Luiz Fernando C.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de Taubaté
dc.contributor.author.fl_str_mv Chaves, Luciano Eustáquio [UNESP]
Nascimento, Luiz Fernando C.
dc.subject.por.fl_str_mv models, theoretical
fuzzy logic
infant, newborn
risk factors
modelos teóricos
lógica fuzzy
recém-nascido
fatores de risco
topic models, theoretical
fuzzy logic
infant, newborn
risk factors
modelos teóricos
lógica fuzzy
recém-nascido
fatores de risco
description OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-01
2015-02-02T12:39:20Z
2015-02-02T12:39:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/0103-058220143228413
Revista Paulista de Pediatria. Sociedade de Pediatria de São Paulo, v. 32, n. 2, p. 164-170, 2014.
0103-0582
http://hdl.handle.net/11449/114210
10.1590/0103-058220143228413
S0103-05822014000200164
S0103-05822014000200164.pdf
url http://dx.doi.org/10.1590/0103-058220143228413
http://hdl.handle.net/11449/114210
identifier_str_mv Revista Paulista de Pediatria. Sociedade de Pediatria de São Paulo, v. 32, n. 2, p. 164-170, 2014.
0103-0582
10.1590/0103-058220143228413
S0103-05822014000200164
S0103-05822014000200164.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Paulista de Pediatria
0,472
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 164-170
application/pdf
dc.publisher.none.fl_str_mv Sociedade de Pediatria de São Paulo
publisher.none.fl_str_mv Sociedade de Pediatria de São Paulo
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128550832701440