Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar

Detalhes bibliográficos
Autor(a) principal: Sugahara, S. [UNESP]
Data de Publicação: 2000
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/224691
Resumo: A MOS (Model Output Statistics) multiple regression equation for the prediction of daily minimum air temperature at the city of Bauru, in São Paulo State, is developed. The multiple regression equation, obtained using stepwise regression analysis, has four predictors, three from the CPTEC (Centre of Weather Forecast and Climate Studies) global model and one from observational data of the meteorological station at IPMet (Institute of Meteorological Research), Bauru. The predictors are the model 24 hours prognosis, valid at 00:00GMT, of 1000hPa temperature, 850hPa meridional wind and 1000hPa relative humidity, and the 18:00GMT observation of temperature. These four predictors account for approximately 80 percent of the total variance of the predictand, with a root mean square error of 1.4°C, i.e., approximately half of the standard deviation of daily mininum temperature observed at the IPMet station. A verification of the MOS equation with an independent sample of 47 cases shows that the forecast value is not significantly deteriorated when the observational predictor is not considered. The MOS equation, with or without this predictor, produces forecast with absolute errors smaller than 7.5°C in 70 percent of the cases studied. This result encourages the use of the MOS technique for operational daily minimum air temperature forecasting and the development of this technique for other weather elements and other localities.
id UNSP_8490262ca0dbcacd28ab20be6659a3d9
oai_identifier_str oai:repositorio.unesp.br:11449/224691
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do arAn experience with Model Output Statistics (MOS) for daily minimum air temperature predictionDaily Minimum Air TemperatureModel Output StatisticsStatistical ForecastA MOS (Model Output Statistics) multiple regression equation for the prediction of daily minimum air temperature at the city of Bauru, in São Paulo State, is developed. The multiple regression equation, obtained using stepwise regression analysis, has four predictors, three from the CPTEC (Centre of Weather Forecast and Climate Studies) global model and one from observational data of the meteorological station at IPMet (Institute of Meteorological Research), Bauru. The predictors are the model 24 hours prognosis, valid at 00:00GMT, of 1000hPa temperature, 850hPa meridional wind and 1000hPa relative humidity, and the 18:00GMT observation of temperature. These four predictors account for approximately 80 percent of the total variance of the predictand, with a root mean square error of 1.4°C, i.e., approximately half of the standard deviation of daily mininum temperature observed at the IPMet station. A verification of the MOS equation with an independent sample of 47 cases shows that the forecast value is not significantly deteriorated when the observational predictor is not considered. The MOS equation, with or without this predictor, produces forecast with absolute errors smaller than 7.5°C in 70 percent of the cases studied. This result encourages the use of the MOS technique for operational daily minimum air temperature forecasting and the development of this technique for other weather elements and other localities.Instituto de Pesquisas Meteorológicas Universidade Estadual Paulista Campus de Bauru, Av. L. Edmundo C. C. s/n, C.P.: 281, Vargem Limpa, CEP: 17001-970Instituto de Pesquisas Meteorológicas Universidade Estadual Paulista Campus de Bauru, Av. L. Edmundo C. C. s/n, C.P.: 281, Vargem Limpa, CEP: 17001-970Universidade Estadual Paulista (UNESP)Sugahara, S. [UNESP]2022-04-28T20:06:54Z2022-04-28T20:06:54Z2000-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-11Revista Brasileira de Geofisica, v. 18, n. 1, p. 1-11, 2000.0102-261Xhttp://hdl.handle.net/11449/2246912-s2.0-30644458215Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporRevista Brasileira de Geofisicainfo:eu-repo/semantics/openAccess2022-04-28T20:06:54Zoai:repositorio.unesp.br:11449/224691Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:50:54.440434Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
An experience with Model Output Statistics (MOS) for daily minimum air temperature prediction
title Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
spellingShingle Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
Sugahara, S. [UNESP]
Daily Minimum Air Temperature
Model Output Statistics
Statistical Forecast
title_short Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
title_full Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
title_fullStr Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
title_full_unstemmed Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
title_sort Uma experiência com modelo estatístico (MOS) para a previsão da temperatura mínima diária do ar
author Sugahara, S. [UNESP]
author_facet Sugahara, S. [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Sugahara, S. [UNESP]
dc.subject.por.fl_str_mv Daily Minimum Air Temperature
Model Output Statistics
Statistical Forecast
topic Daily Minimum Air Temperature
Model Output Statistics
Statistical Forecast
description A MOS (Model Output Statistics) multiple regression equation for the prediction of daily minimum air temperature at the city of Bauru, in São Paulo State, is developed. The multiple regression equation, obtained using stepwise regression analysis, has four predictors, three from the CPTEC (Centre of Weather Forecast and Climate Studies) global model and one from observational data of the meteorological station at IPMet (Institute of Meteorological Research), Bauru. The predictors are the model 24 hours prognosis, valid at 00:00GMT, of 1000hPa temperature, 850hPa meridional wind and 1000hPa relative humidity, and the 18:00GMT observation of temperature. These four predictors account for approximately 80 percent of the total variance of the predictand, with a root mean square error of 1.4°C, i.e., approximately half of the standard deviation of daily mininum temperature observed at the IPMet station. A verification of the MOS equation with an independent sample of 47 cases shows that the forecast value is not significantly deteriorated when the observational predictor is not considered. The MOS equation, with or without this predictor, produces forecast with absolute errors smaller than 7.5°C in 70 percent of the cases studied. This result encourages the use of the MOS technique for operational daily minimum air temperature forecasting and the development of this technique for other weather elements and other localities.
publishDate 2000
dc.date.none.fl_str_mv 2000-03-01
2022-04-28T20:06:54Z
2022-04-28T20:06:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Revista Brasileira de Geofisica, v. 18, n. 1, p. 1-11, 2000.
0102-261X
http://hdl.handle.net/11449/224691
2-s2.0-30644458215
identifier_str_mv Revista Brasileira de Geofisica, v. 18, n. 1, p. 1-11, 2000.
0102-261X
2-s2.0-30644458215
url http://hdl.handle.net/11449/224691
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Revista Brasileira de Geofisica
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-11
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128990361157632