Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data

Detalhes bibliográficos
Autor(a) principal: Paes, Rafael L.
Data de Publicação: 2011
Outros Autores: Pagamisse, Aylton [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-642-24082-9_71
http://hdl.handle.net/11449/72750
Resumo: We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.
id UNSP_856b378f44f65fe4e7a05f90be496aa9
oai_identifier_str oai:repositorio.unesp.br:11449/72750
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR datadecision treesremote sensingSARtarget detectionwaveletsData sourceDescriptorsImage descriptorsMaritime surveillanceOblique decision treeOcean featureSAR dataSAR ImagesSea surfacesShip wakesStatistical parametersDecision treesInformation technologyPlant extractsRemote sensingShipsTrees (mathematics)Discrete wavelet transformsWe are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.Institute of Advanced Studies IEAv Geointelligence Division, São José dos CamposSão Paulo State University UNESP, Presidente PrudenteSão Paulo State University UNESP, Presidente PrudenteGeointelligence DivisionUniversidade Estadual Paulista (Unesp)Paes, Rafael L.Pagamisse, Aylton [UNESP]2014-05-27T11:26:05Z2014-05-27T11:26:05Z2011-10-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject582-589http://dx.doi.org/10.1007/978-3-642-24082-9_71Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6935 LNCS, p. 582-589.0302-97431611-3349http://hdl.handle.net/11449/7275010.1007/978-3-642-24082-9_712-s2.0-800540739050304271846229471Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-06-18T18:18:37Zoai:repositorio.unesp.br:11449/72750Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:38:45.097765Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
title Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
spellingShingle Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
Paes, Rafael L.
decision trees
remote sensing
SAR
target detection
wavelets
Data source
Descriptors
Image descriptors
Maritime surveillance
Oblique decision tree
Ocean feature
SAR data
SAR Images
Sea surfaces
Ship wakes
Statistical parameters
Decision trees
Information technology
Plant extracts
Remote sensing
Ships
Trees (mathematics)
Discrete wavelet transforms
title_short Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
title_full Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
title_fullStr Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
title_full_unstemmed Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
title_sort Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
author Paes, Rafael L.
author_facet Paes, Rafael L.
Pagamisse, Aylton [UNESP]
author_role author
author2 Pagamisse, Aylton [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Geointelligence Division
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Paes, Rafael L.
Pagamisse, Aylton [UNESP]
dc.subject.por.fl_str_mv decision trees
remote sensing
SAR
target detection
wavelets
Data source
Descriptors
Image descriptors
Maritime surveillance
Oblique decision tree
Ocean feature
SAR data
SAR Images
Sea surfaces
Ship wakes
Statistical parameters
Decision trees
Information technology
Plant extracts
Remote sensing
Ships
Trees (mathematics)
Discrete wavelet transforms
topic decision trees
remote sensing
SAR
target detection
wavelets
Data source
Descriptors
Image descriptors
Maritime surveillance
Oblique decision tree
Ocean feature
SAR data
SAR Images
Sea surfaces
Ship wakes
Statistical parameters
Decision trees
Information technology
Plant extracts
Remote sensing
Ships
Trees (mathematics)
Discrete wavelet transforms
description We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.
publishDate 2011
dc.date.none.fl_str_mv 2011-10-19
2014-05-27T11:26:05Z
2014-05-27T11:26:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-642-24082-9_71
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6935 LNCS, p. 582-589.
0302-9743
1611-3349
http://hdl.handle.net/11449/72750
10.1007/978-3-642-24082-9_71
2-s2.0-80054073905
0304271846229471
url http://dx.doi.org/10.1007/978-3-642-24082-9_71
http://hdl.handle.net/11449/72750
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6935 LNCS, p. 582-589.
0302-9743
1611-3349
10.1007/978-3-642-24082-9_71
2-s2.0-80054073905
0304271846229471
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 582-589
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129100297011200