Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-642-24082-9_71 http://hdl.handle.net/11449/72750 |
Resumo: | We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag. |
id |
UNSP_856b378f44f65fe4e7a05f90be496aa9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72750 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR datadecision treesremote sensingSARtarget detectionwaveletsData sourceDescriptorsImage descriptorsMaritime surveillanceOblique decision treeOcean featureSAR dataSAR ImagesSea surfacesShip wakesStatistical parametersDecision treesInformation technologyPlant extractsRemote sensingShipsTrees (mathematics)Discrete wavelet transformsWe are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.Institute of Advanced Studies IEAv Geointelligence Division, São José dos CamposSão Paulo State University UNESP, Presidente PrudenteSão Paulo State University UNESP, Presidente PrudenteGeointelligence DivisionUniversidade Estadual Paulista (Unesp)Paes, Rafael L.Pagamisse, Aylton [UNESP]2014-05-27T11:26:05Z2014-05-27T11:26:05Z2011-10-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject582-589http://dx.doi.org/10.1007/978-3-642-24082-9_71Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6935 LNCS, p. 582-589.0302-97431611-3349http://hdl.handle.net/11449/7275010.1007/978-3-642-24082-9_712-s2.0-800540739050304271846229471Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-06-18T18:18:37Zoai:repositorio.unesp.br:11449/72750Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:38:45.097765Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
title |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
spellingShingle |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data Paes, Rafael L. decision trees remote sensing SAR target detection wavelets Data source Descriptors Image descriptors Maritime surveillance Oblique decision tree Ocean feature SAR data SAR Images Sea surfaces Ship wakes Statistical parameters Decision trees Information technology Plant extracts Remote sensing Ships Trees (mathematics) Discrete wavelet transforms |
title_short |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
title_full |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
title_fullStr |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
title_full_unstemmed |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
title_sort |
Wavelets and decision trees for target detection over sea surface using cosmo-skymed SAR data |
author |
Paes, Rafael L. |
author_facet |
Paes, Rafael L. Pagamisse, Aylton [UNESP] |
author_role |
author |
author2 |
Pagamisse, Aylton [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Geointelligence Division Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Paes, Rafael L. Pagamisse, Aylton [UNESP] |
dc.subject.por.fl_str_mv |
decision trees remote sensing SAR target detection wavelets Data source Descriptors Image descriptors Maritime surveillance Oblique decision tree Ocean feature SAR data SAR Images Sea surfaces Ship wakes Statistical parameters Decision trees Information technology Plant extracts Remote sensing Ships Trees (mathematics) Discrete wavelet transforms |
topic |
decision trees remote sensing SAR target detection wavelets Data source Descriptors Image descriptors Maritime surveillance Oblique decision tree Ocean feature SAR data SAR Images Sea surfaces Ship wakes Statistical parameters Decision trees Information technology Plant extracts Remote sensing Ships Trees (mathematics) Discrete wavelet transforms |
description |
We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10-19 2014-05-27T11:26:05Z 2014-05-27T11:26:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-642-24082-9_71 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6935 LNCS, p. 582-589. 0302-9743 1611-3349 http://hdl.handle.net/11449/72750 10.1007/978-3-642-24082-9_71 2-s2.0-80054073905 0304271846229471 |
url |
http://dx.doi.org/10.1007/978-3-642-24082-9_71 http://hdl.handle.net/11449/72750 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6935 LNCS, p. 582-589. 0302-9743 1611-3349 10.1007/978-3-642-24082-9_71 2-s2.0-80054073905 0304271846229471 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
582-589 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129100297011200 |