Towards vegetation species discrimination by using data-driven descriptors

Detalhes bibliográficos
Autor(a) principal: Nogueira, Keiller
Data de Publicação: 2016
Outros Autores: Santos, Jefersson A. dos, Fornazari, Tamires [UNESP], Freire Silva, Thiago Sanna [UNESP], Morellato, Leonor Patricia [UNESP], Torres, Ricardo da S., IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/165616
Resumo: In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.
id UNSP_86c2b4aa69e24d4ed3a2f4d82fb739a9
oai_identifier_str oai:repositorio.unesp.br:11449/165616
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Towards vegetation species discrimination by using data-driven descriptorsDeep LearningRemote SensingFeature LearningImage ClassificationMachine LearningHigh-resolution ImagesIn this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Minas Gerais UFMG, Dept Comp Sci, BR-31270010 Belo Horizonte, MG, BrazilSao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, BrazilUniv Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, BrazilSao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, BrazilCNPq: 449638/2014-6FAPEMIG: APQ-00768-14FAPESP: 2013/50169-1FAPESP: 2013/50155-0IeeeUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerSantos, Jefersson A. dosFornazari, Tamires [UNESP]Freire Silva, Thiago Sanna [UNESP]Morellato, Leonor Patricia [UNESP]Torres, Ricardo da S.IEEE2018-11-28T12:40:20Z2018-11-28T12:40:20Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject62016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.2377-0198http://hdl.handle.net/11449/165616WOS:000402041100013Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs)info:eu-repo/semantics/openAccess2021-10-23T21:44:21Zoai:repositorio.unesp.br:11449/165616Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:49:46.785590Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Towards vegetation species discrimination by using data-driven descriptors
title Towards vegetation species discrimination by using data-driven descriptors
spellingShingle Towards vegetation species discrimination by using data-driven descriptors
Nogueira, Keiller
Deep Learning
Remote Sensing
Feature Learning
Image Classification
Machine Learning
High-resolution Images
title_short Towards vegetation species discrimination by using data-driven descriptors
title_full Towards vegetation species discrimination by using data-driven descriptors
title_fullStr Towards vegetation species discrimination by using data-driven descriptors
title_full_unstemmed Towards vegetation species discrimination by using data-driven descriptors
title_sort Towards vegetation species discrimination by using data-driven descriptors
author Nogueira, Keiller
author_facet Nogueira, Keiller
Santos, Jefersson A. dos
Fornazari, Tamires [UNESP]
Freire Silva, Thiago Sanna [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo da S.
IEEE
author_role author
author2 Santos, Jefersson A. dos
Fornazari, Tamires [UNESP]
Freire Silva, Thiago Sanna [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo da S.
IEEE
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Nogueira, Keiller
Santos, Jefersson A. dos
Fornazari, Tamires [UNESP]
Freire Silva, Thiago Sanna [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo da S.
IEEE
dc.subject.por.fl_str_mv Deep Learning
Remote Sensing
Feature Learning
Image Classification
Machine Learning
High-resolution Images
topic Deep Learning
Remote Sensing
Feature Learning
Image Classification
Machine Learning
High-resolution Images
description In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-11-28T12:40:20Z
2018-11-28T12:40:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.
2377-0198
http://hdl.handle.net/11449/165616
WOS:000402041100013
identifier_str_mv 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.
2377-0198
WOS:000402041100013
url http://hdl.handle.net/11449/165616
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128421783404544