Towards vegetation species discrimination by using data-driven descriptors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/165616 |
Resumo: | In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets. |
id |
UNSP_86c2b4aa69e24d4ed3a2f4d82fb739a9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/165616 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Towards vegetation species discrimination by using data-driven descriptorsDeep LearningRemote SensingFeature LearningImage ClassificationMachine LearningHigh-resolution ImagesIn this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Minas Gerais UFMG, Dept Comp Sci, BR-31270010 Belo Horizonte, MG, BrazilSao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, BrazilUniv Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, BrazilSao Paulo State Univ UNESP, BR-13506900 Rio Claro, SP, BrazilCNPq: 449638/2014-6FAPEMIG: APQ-00768-14FAPESP: 2013/50169-1FAPESP: 2013/50155-0IeeeUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerSantos, Jefersson A. dosFornazari, Tamires [UNESP]Freire Silva, Thiago Sanna [UNESP]Morellato, Leonor Patricia [UNESP]Torres, Ricardo da S.IEEE2018-11-28T12:40:20Z2018-11-28T12:40:20Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject62016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.2377-0198http://hdl.handle.net/11449/165616WOS:000402041100013Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs)info:eu-repo/semantics/openAccess2021-10-23T21:44:21Zoai:repositorio.unesp.br:11449/165616Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:49:46.785590Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Towards vegetation species discrimination by using data-driven descriptors |
title |
Towards vegetation species discrimination by using data-driven descriptors |
spellingShingle |
Towards vegetation species discrimination by using data-driven descriptors Nogueira, Keiller Deep Learning Remote Sensing Feature Learning Image Classification Machine Learning High-resolution Images |
title_short |
Towards vegetation species discrimination by using data-driven descriptors |
title_full |
Towards vegetation species discrimination by using data-driven descriptors |
title_fullStr |
Towards vegetation species discrimination by using data-driven descriptors |
title_full_unstemmed |
Towards vegetation species discrimination by using data-driven descriptors |
title_sort |
Towards vegetation species discrimination by using data-driven descriptors |
author |
Nogueira, Keiller |
author_facet |
Nogueira, Keiller Santos, Jefersson A. dos Fornazari, Tamires [UNESP] Freire Silva, Thiago Sanna [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo da S. IEEE |
author_role |
author |
author2 |
Santos, Jefersson A. dos Fornazari, Tamires [UNESP] Freire Silva, Thiago Sanna [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo da S. IEEE |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Nogueira, Keiller Santos, Jefersson A. dos Fornazari, Tamires [UNESP] Freire Silva, Thiago Sanna [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo da S. IEEE |
dc.subject.por.fl_str_mv |
Deep Learning Remote Sensing Feature Learning Image Classification Machine Learning High-resolution Images |
topic |
Deep Learning Remote Sensing Feature Learning Image Classification Machine Learning High-resolution Images |
description |
In this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform well-known feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-11-28T12:40:20Z 2018-11-28T12:40:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016. 2377-0198 http://hdl.handle.net/11449/165616 WOS:000402041100013 |
identifier_str_mv |
2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016. 2377-0198 WOS:000402041100013 |
url |
http://hdl.handle.net/11449/165616 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
6 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128421783404544 |