Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICTEL.2010.5478852 http://hdl.handle.net/11449/225968 |
Resumo: | Intrusion detection datasets play a key role in fine tuning Intrusion Detection Systems (IDSs). Using such datasets one can distinguish between regular and anomalous behavior of a given node in the network. To build this dataset is not straightforward, though, as only the most significant features of the collected data for detecting the node's behavior should be considered. We propose in this paper a technique for selecting relevant features out of KDD99 using a hybrid approach toward an optimal subset of features. Unlike existing work that only detect attack or no attack conditions, our approach efficiently identifies which sort of attack each register in the dataset refers to. The evaluation results show that the optimized subset of features can improve performance of typical IDSs. © 2009 IEEE. |
id |
UNSP_87acd7638eb0ff46fb53b7bc0ab3c8ab |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/225968 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approachHybrid approachInformation gain ratioK-meansKDD99. feature selectionIntrusion detection datasets play a key role in fine tuning Intrusion Detection Systems (IDSs). Using such datasets one can distinguish between regular and anomalous behavior of a given node in the network. To build this dataset is not straightforward, though, as only the most significant features of the collected data for detecting the node's behavior should be considered. We propose in this paper a technique for selecting relevant features out of KDD99 using a hybrid approach toward an optimal subset of features. Unlike existing work that only detect attack or no attack conditions, our approach efficiently identifies which sort of attack each register in the dataset refers to. The evaluation results show that the optimized subset of features can improve performance of typical IDSs. © 2009 IEEE.Institute of Computing Federal University of Mato Grosso, Cuiabá, MTDepartment of Informatics Federal Institute of Mato Grosso, Cuiabá, MTDepartment of Electrical Engineering State University Júlio de Mesquita Filho, Ilha Solteira, SPDepartment of Computer Science Purdue University, West Lafayette, INDepartment of Electrical Engineering State University Júlio de Mesquita Filho, Ilha Solteira, SPFederal University of Mato GrossoFederal Institute of Mato GrossoUniversidade Estadual Paulista (UNESP)Purdue UniversityAraújo, NelcilenoDe Oliveira, RuyFerreira, Ed'WilsonShinoda, Ailton Akira [UNESP]Bhargava, Bharat2022-04-28T21:02:11Z2022-04-28T21:02:11Z2010-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject552-558http://dx.doi.org/10.1109/ICTEL.2010.5478852ICT 2010: 2010 17th International Conference on Telecommunications, p. 552-558.http://hdl.handle.net/11449/22596810.1109/ICTEL.2010.54788522-s2.0-77954556689Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICT 2010: 2010 17th International Conference on Telecommunicationsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:50Zoai:repositorio.unesp.br:11449/225968Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:09.988865Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
title |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
spellingShingle |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach Araújo, Nelcileno Hybrid approach Information gain ratio K-means KDD99. feature selection |
title_short |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
title_full |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
title_fullStr |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
title_full_unstemmed |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
title_sort |
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach |
author |
Araújo, Nelcileno |
author_facet |
Araújo, Nelcileno De Oliveira, Ruy Ferreira, Ed'Wilson Shinoda, Ailton Akira [UNESP] Bhargava, Bharat |
author_role |
author |
author2 |
De Oliveira, Ruy Ferreira, Ed'Wilson Shinoda, Ailton Akira [UNESP] Bhargava, Bharat |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Federal University of Mato Grosso Federal Institute of Mato Grosso Universidade Estadual Paulista (UNESP) Purdue University |
dc.contributor.author.fl_str_mv |
Araújo, Nelcileno De Oliveira, Ruy Ferreira, Ed'Wilson Shinoda, Ailton Akira [UNESP] Bhargava, Bharat |
dc.subject.por.fl_str_mv |
Hybrid approach Information gain ratio K-means KDD99. feature selection |
topic |
Hybrid approach Information gain ratio K-means KDD99. feature selection |
description |
Intrusion detection datasets play a key role in fine tuning Intrusion Detection Systems (IDSs). Using such datasets one can distinguish between regular and anomalous behavior of a given node in the network. To build this dataset is not straightforward, though, as only the most significant features of the collected data for detecting the node's behavior should be considered. We propose in this paper a technique for selecting relevant features out of KDD99 using a hybrid approach toward an optimal subset of features. Unlike existing work that only detect attack or no attack conditions, our approach efficiently identifies which sort of attack each register in the dataset refers to. The evaluation results show that the optimized subset of features can improve performance of typical IDSs. © 2009 IEEE. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07-19 2022-04-28T21:02:11Z 2022-04-28T21:02:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICTEL.2010.5478852 ICT 2010: 2010 17th International Conference on Telecommunications, p. 552-558. http://hdl.handle.net/11449/225968 10.1109/ICTEL.2010.5478852 2-s2.0-77954556689 |
url |
http://dx.doi.org/10.1109/ICTEL.2010.5478852 http://hdl.handle.net/11449/225968 |
identifier_str_mv |
ICT 2010: 2010 17th International Conference on Telecommunications, p. 552-558. 10.1109/ICTEL.2010.5478852 2-s2.0-77954556689 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ICT 2010: 2010 17th International Conference on Telecommunications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
552-558 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129366506340352 |