Kernel-based quantum regressor models learning non-Markovianity

Detalhes bibliográficos
Autor(a) principal: Tancara, Diego
Data de Publicação: 2023
Outros Autores: Dinani, Hossein T., Norambuena, Ariel, Fanchini, Felipe F. [UNESP], Coto, Raúl
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevA.107.022402
http://hdl.handle.net/11449/246795
Resumo: Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum data set. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate predictions that are comparable with the fully classical models.
id UNSP_8831d403412e8b8bb703a2c3668c9bfc
oai_identifier_str oai:repositorio.unesp.br:11449/246795
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Kernel-based quantum regressor models learning non-MarkovianityQuantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum data set. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate predictions that are comparable with the fully classical models.Centro de Óptica e Información Cuántica Universidad Mayor, Vicerrectoría de InvestigaciónEscuela Data Science Facultad de Ciencias Ingenería y Tecnología Universidad MayorUniversidad Mayor Vicerrectoría de InvestigaciónFaculdade de Ciências UNESP Universidade Estadual Paulista, SPDepartment of Physics Florida International UniversityUniversidad Bernardo O Higgins Santiago de ChileFaculdade de Ciências UNESP Universidade Estadual Paulista, SPUniversidad MayorVicerrectoría de InvestigaciónUniversidade Estadual Paulista (UNESP)Florida International UniversitySantiago de ChileTancara, DiegoDinani, Hossein T.Norambuena, ArielFanchini, Felipe F. [UNESP]Coto, Raúl2023-07-29T12:50:44Z2023-07-29T12:50:44Z2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.107.022402Physical Review A, v. 107, n. 2, 2023.2469-99342469-9926http://hdl.handle.net/11449/24679510.1103/PhysRevA.107.0224022-s2.0-85147735110Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2023-07-29T12:50:44Zoai:repositorio.unesp.br:11449/246795Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-05-23T11:46:39.213597Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Kernel-based quantum regressor models learning non-Markovianity
title Kernel-based quantum regressor models learning non-Markovianity
spellingShingle Kernel-based quantum regressor models learning non-Markovianity
Tancara, Diego
title_short Kernel-based quantum regressor models learning non-Markovianity
title_full Kernel-based quantum regressor models learning non-Markovianity
title_fullStr Kernel-based quantum regressor models learning non-Markovianity
title_full_unstemmed Kernel-based quantum regressor models learning non-Markovianity
title_sort Kernel-based quantum regressor models learning non-Markovianity
author Tancara, Diego
author_facet Tancara, Diego
Dinani, Hossein T.
Norambuena, Ariel
Fanchini, Felipe F. [UNESP]
Coto, Raúl
author_role author
author2 Dinani, Hossein T.
Norambuena, Ariel
Fanchini, Felipe F. [UNESP]
Coto, Raúl
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidad Mayor
Vicerrectoría de Investigación
Universidade Estadual Paulista (UNESP)
Florida International University
Santiago de Chile
dc.contributor.author.fl_str_mv Tancara, Diego
Dinani, Hossein T.
Norambuena, Ariel
Fanchini, Felipe F. [UNESP]
Coto, Raúl
description Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum data set. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate predictions that are comparable with the fully classical models.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T12:50:44Z
2023-07-29T12:50:44Z
2023-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevA.107.022402
Physical Review A, v. 107, n. 2, 2023.
2469-9934
2469-9926
http://hdl.handle.net/11449/246795
10.1103/PhysRevA.107.022402
2-s2.0-85147735110
url http://dx.doi.org/10.1103/PhysRevA.107.022402
http://hdl.handle.net/11449/246795
identifier_str_mv Physical Review A, v. 107, n. 2, 2023.
2469-9934
2469-9926
10.1103/PhysRevA.107.022402
2-s2.0-85147735110
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review A
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803045880681463808