Fisher information of the Kuramoto model: A geometric reading on synchronization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.1016/j.physd.2021.132926 |
Texto Completo: | http://dx.doi.org/10.1016/j.physd.2021.132926 http://hdl.handle.net/11449/228938 |
Resumo: | In this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points. |
id |
UNSP_88810bba0321d1c85d6191d1628b1720 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/228938 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fisher information of the Kuramoto model: A geometric reading on synchronizationInformation geometryNonlinearitySymmetry breakingSynchronizationIn this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Physics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroDepartment of Mathematics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroDepartment of Physics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroDepartment of Mathematics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroFAPESP: 2019/14038-6CNPq: 301318/2019-0Universidade Estadual Paulista (UNESP)da Silva, V. B. [UNESP]Vieira, J. P. [UNESP]Leonel, Edson D. [UNESP]2022-04-29T08:29:29Z2022-04-29T08:29:29Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.physd.2021.132926Physica D: Nonlinear Phenomena, v. 423.0167-2789http://hdl.handle.net/11449/22893810.1016/j.physd.2021.1329262-s2.0-85105690731Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica D: Nonlinear Phenomenainfo:eu-repo/semantics/openAccess2022-04-29T08:29:30Zoai:repositorio.unesp.br:11449/228938Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:45:08.216081Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fisher information of the Kuramoto model: A geometric reading on synchronization |
title |
Fisher information of the Kuramoto model: A geometric reading on synchronization |
spellingShingle |
Fisher information of the Kuramoto model: A geometric reading on synchronization Fisher information of the Kuramoto model: A geometric reading on synchronization da Silva, V. B. [UNESP] Information geometry Nonlinearity Symmetry breaking Synchronization da Silva, V. B. [UNESP] Information geometry Nonlinearity Symmetry breaking Synchronization |
title_short |
Fisher information of the Kuramoto model: A geometric reading on synchronization |
title_full |
Fisher information of the Kuramoto model: A geometric reading on synchronization |
title_fullStr |
Fisher information of the Kuramoto model: A geometric reading on synchronization Fisher information of the Kuramoto model: A geometric reading on synchronization |
title_full_unstemmed |
Fisher information of the Kuramoto model: A geometric reading on synchronization Fisher information of the Kuramoto model: A geometric reading on synchronization |
title_sort |
Fisher information of the Kuramoto model: A geometric reading on synchronization |
author |
da Silva, V. B. [UNESP] |
author_facet |
da Silva, V. B. [UNESP] da Silva, V. B. [UNESP] Vieira, J. P. [UNESP] Leonel, Edson D. [UNESP] Vieira, J. P. [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Vieira, J. P. [UNESP] Leonel, Edson D. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
da Silva, V. B. [UNESP] Vieira, J. P. [UNESP] Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Information geometry Nonlinearity Symmetry breaking Synchronization |
topic |
Information geometry Nonlinearity Symmetry breaking Synchronization |
description |
In this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01 2022-04-29T08:29:29Z 2022-04-29T08:29:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physd.2021.132926 Physica D: Nonlinear Phenomena, v. 423. 0167-2789 http://hdl.handle.net/11449/228938 10.1016/j.physd.2021.132926 2-s2.0-85105690731 |
url |
http://dx.doi.org/10.1016/j.physd.2021.132926 http://hdl.handle.net/11449/228938 |
identifier_str_mv |
Physica D: Nonlinear Phenomena, v. 423. 0167-2789 10.1016/j.physd.2021.132926 2-s2.0-85105690731 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica D: Nonlinear Phenomena |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822182433448001536 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.physd.2021.132926 |