Fisher information of the Kuramoto model: A geometric reading on synchronization

Detalhes bibliográficos
Autor(a) principal: da Silva, V. B. [UNESP]
Data de Publicação: 2021
Outros Autores: Vieira, J. P. [UNESP], Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
DOI: 10.1016/j.physd.2021.132926
Texto Completo: http://dx.doi.org/10.1016/j.physd.2021.132926
http://hdl.handle.net/11449/228938
Resumo: In this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points.
id UNSP_88810bba0321d1c85d6191d1628b1720
oai_identifier_str oai:repositorio.unesp.br:11449/228938
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fisher information of the Kuramoto model: A geometric reading on synchronizationInformation geometryNonlinearitySymmetry breakingSynchronizationIn this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Physics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroDepartment of Mathematics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroDepartment of Physics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroDepartment of Mathematics Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio ClaroFAPESP: 2019/14038-6CNPq: 301318/2019-0Universidade Estadual Paulista (UNESP)da Silva, V. B. [UNESP]Vieira, J. P. [UNESP]Leonel, Edson D. [UNESP]2022-04-29T08:29:29Z2022-04-29T08:29:29Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.physd.2021.132926Physica D: Nonlinear Phenomena, v. 423.0167-2789http://hdl.handle.net/11449/22893810.1016/j.physd.2021.1329262-s2.0-85105690731Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica D: Nonlinear Phenomenainfo:eu-repo/semantics/openAccess2022-04-29T08:29:30Zoai:repositorio.unesp.br:11449/228938Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:45:08.216081Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fisher information of the Kuramoto model: A geometric reading on synchronization
title Fisher information of the Kuramoto model: A geometric reading on synchronization
spellingShingle Fisher information of the Kuramoto model: A geometric reading on synchronization
Fisher information of the Kuramoto model: A geometric reading on synchronization
da Silva, V. B. [UNESP]
Information geometry
Nonlinearity
Symmetry breaking
Synchronization
da Silva, V. B. [UNESP]
Information geometry
Nonlinearity
Symmetry breaking
Synchronization
title_short Fisher information of the Kuramoto model: A geometric reading on synchronization
title_full Fisher information of the Kuramoto model: A geometric reading on synchronization
title_fullStr Fisher information of the Kuramoto model: A geometric reading on synchronization
Fisher information of the Kuramoto model: A geometric reading on synchronization
title_full_unstemmed Fisher information of the Kuramoto model: A geometric reading on synchronization
Fisher information of the Kuramoto model: A geometric reading on synchronization
title_sort Fisher information of the Kuramoto model: A geometric reading on synchronization
author da Silva, V. B. [UNESP]
author_facet da Silva, V. B. [UNESP]
da Silva, V. B. [UNESP]
Vieira, J. P. [UNESP]
Leonel, Edson D. [UNESP]
Vieira, J. P. [UNESP]
Leonel, Edson D. [UNESP]
author_role author
author2 Vieira, J. P. [UNESP]
Leonel, Edson D. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv da Silva, V. B. [UNESP]
Vieira, J. P. [UNESP]
Leonel, Edson D. [UNESP]
dc.subject.por.fl_str_mv Information geometry
Nonlinearity
Symmetry breaking
Synchronization
topic Information geometry
Nonlinearity
Symmetry breaking
Synchronization
description In this paper, we make a geometric investigation of the synchronization described by the Kuramoto model. The model consists of two-coupled oscillators with distinct frequencies, phase X, coupling strength K, and control parameter M. Here, we use information theory to derive the Riemannian metric and the curvature scalar as a new attempt to obtain information from the phenomenon of synchronization. The components of the metric are represented by second moments of stochastic variables. The scalar curvature R is a function of the second and third moments. It is found that the emergence of synchronization is associated with the divergence of curvature scalar. Nearby the phase transition from incoherence to synchronization, the following scaling law holds R∼M−MC−2. Critical exponents and scaling relations are assigned through standard scaling assumptions. The method presented here is general extendable to physical systems in nonlinear sciences, including those who possess normal forms and critical points.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
2022-04-29T08:29:29Z
2022-04-29T08:29:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physd.2021.132926
Physica D: Nonlinear Phenomena, v. 423.
0167-2789
http://hdl.handle.net/11449/228938
10.1016/j.physd.2021.132926
2-s2.0-85105690731
url http://dx.doi.org/10.1016/j.physd.2021.132926
http://hdl.handle.net/11449/228938
identifier_str_mv Physica D: Nonlinear Phenomena, v. 423.
0167-2789
10.1016/j.physd.2021.132926
2-s2.0-85105690731
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica D: Nonlinear Phenomena
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1822182433448001536
dc.identifier.doi.none.fl_str_mv 10.1016/j.physd.2021.132926