An extremal nonnegative sine polynomial

Detalhes bibliográficos
Autor(a) principal: Andreani, Roberto [UNESP]
Data de Publicação: 2003
Outros Autores: Dimitrov, Dimitar K. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1216/rmjm/1181069926
http://hdl.handle.net/11449/67393
Resumo: For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.
id UNSP_88c4341a7c3de2a3c7ec5b15b6d23cb2
oai_identifier_str oai:repositorio.unesp.br:11449/67393
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An extremal nonnegative sine polynomialConvergenceExtremal polynomial ultraspherical polynomialsNonnegative sine polynomialPositive summability kernelFor any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.Depto. de Cie. de Comp. Ibilce Universidade Estadual Paulista, 15054-000 S. Jose do Rio Preto, SPDepto. de Cie. de Comp. Ibilce Universidade Estadual Paulista, 15054-000 S. Jose do Rio Preto, SPUniversidade Estadual Paulista (Unesp)Andreani, Roberto [UNESP]Dimitrov, Dimitar K. [UNESP]2014-05-27T11:20:53Z2014-05-27T11:20:53Z2003-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article759-774application/pdfhttp://dx.doi.org/10.1216/rmjm/1181069926Rocky Mountain Journal of Mathematics, v. 33, n. 3, p. 759-774, 2003.0035-7596http://hdl.handle.net/11449/6739310.1216/rmjm/1181069926WOS:0002200114000012-s2.0-16422967802-s2.0-1642296780.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRocky Mountain Journal of Mathematics0.3300,398info:eu-repo/semantics/openAccess2023-10-27T06:06:16Zoai:repositorio.unesp.br:11449/67393Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:05:22.462077Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An extremal nonnegative sine polynomial
title An extremal nonnegative sine polynomial
spellingShingle An extremal nonnegative sine polynomial
Andreani, Roberto [UNESP]
Convergence
Extremal polynomial ultraspherical polynomials
Nonnegative sine polynomial
Positive summability kernel
title_short An extremal nonnegative sine polynomial
title_full An extremal nonnegative sine polynomial
title_fullStr An extremal nonnegative sine polynomial
title_full_unstemmed An extremal nonnegative sine polynomial
title_sort An extremal nonnegative sine polynomial
author Andreani, Roberto [UNESP]
author_facet Andreani, Roberto [UNESP]
Dimitrov, Dimitar K. [UNESP]
author_role author
author2 Dimitrov, Dimitar K. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Andreani, Roberto [UNESP]
Dimitrov, Dimitar K. [UNESP]
dc.subject.por.fl_str_mv Convergence
Extremal polynomial ultraspherical polynomials
Nonnegative sine polynomial
Positive summability kernel
topic Convergence
Extremal polynomial ultraspherical polynomials
Nonnegative sine polynomial
Positive summability kernel
description For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.
publishDate 2003
dc.date.none.fl_str_mv 2003-09-01
2014-05-27T11:20:53Z
2014-05-27T11:20:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1216/rmjm/1181069926
Rocky Mountain Journal of Mathematics, v. 33, n. 3, p. 759-774, 2003.
0035-7596
http://hdl.handle.net/11449/67393
10.1216/rmjm/1181069926
WOS:000220011400001
2-s2.0-1642296780
2-s2.0-1642296780.pdf
url http://dx.doi.org/10.1216/rmjm/1181069926
http://hdl.handle.net/11449/67393
identifier_str_mv Rocky Mountain Journal of Mathematics, v. 33, n. 3, p. 759-774, 2003.
0035-7596
10.1216/rmjm/1181069926
WOS:000220011400001
2-s2.0-1642296780
2-s2.0-1642296780.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Rocky Mountain Journal of Mathematics
0.330
0,398
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 759-774
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128606913691648