An extremal nonnegative sine polynomial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1216/rmjm/1181069926 http://hdl.handle.net/11449/67393 |
Resumo: | For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction. |
id |
UNSP_88c4341a7c3de2a3c7ec5b15b6d23cb2 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/67393 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An extremal nonnegative sine polynomialConvergenceExtremal polynomial ultraspherical polynomialsNonnegative sine polynomialPositive summability kernelFor any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.Depto. de Cie. de Comp. Ibilce Universidade Estadual Paulista, 15054-000 S. Jose do Rio Preto, SPDepto. de Cie. de Comp. Ibilce Universidade Estadual Paulista, 15054-000 S. Jose do Rio Preto, SPUniversidade Estadual Paulista (Unesp)Andreani, Roberto [UNESP]Dimitrov, Dimitar K. [UNESP]2014-05-27T11:20:53Z2014-05-27T11:20:53Z2003-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article759-774application/pdfhttp://dx.doi.org/10.1216/rmjm/1181069926Rocky Mountain Journal of Mathematics, v. 33, n. 3, p. 759-774, 2003.0035-7596http://hdl.handle.net/11449/6739310.1216/rmjm/1181069926WOS:0002200114000012-s2.0-16422967802-s2.0-1642296780.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRocky Mountain Journal of Mathematics0.3300,398info:eu-repo/semantics/openAccess2023-10-27T06:06:16Zoai:repositorio.unesp.br:11449/67393Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:05:22.462077Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An extremal nonnegative sine polynomial |
title |
An extremal nonnegative sine polynomial |
spellingShingle |
An extremal nonnegative sine polynomial Andreani, Roberto [UNESP] Convergence Extremal polynomial ultraspherical polynomials Nonnegative sine polynomial Positive summability kernel |
title_short |
An extremal nonnegative sine polynomial |
title_full |
An extremal nonnegative sine polynomial |
title_fullStr |
An extremal nonnegative sine polynomial |
title_full_unstemmed |
An extremal nonnegative sine polynomial |
title_sort |
An extremal nonnegative sine polynomial |
author |
Andreani, Roberto [UNESP] |
author_facet |
Andreani, Roberto [UNESP] Dimitrov, Dimitar K. [UNESP] |
author_role |
author |
author2 |
Dimitrov, Dimitar K. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Andreani, Roberto [UNESP] Dimitrov, Dimitar K. [UNESP] |
dc.subject.por.fl_str_mv |
Convergence Extremal polynomial ultraspherical polynomials Nonnegative sine polynomial Positive summability kernel |
topic |
Convergence Extremal polynomial ultraspherical polynomials Nonnegative sine polynomial Positive summability kernel |
description |
For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-09-01 2014-05-27T11:20:53Z 2014-05-27T11:20:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1216/rmjm/1181069926 Rocky Mountain Journal of Mathematics, v. 33, n. 3, p. 759-774, 2003. 0035-7596 http://hdl.handle.net/11449/67393 10.1216/rmjm/1181069926 WOS:000220011400001 2-s2.0-1642296780 2-s2.0-1642296780.pdf |
url |
http://dx.doi.org/10.1216/rmjm/1181069926 http://hdl.handle.net/11449/67393 |
identifier_str_mv |
Rocky Mountain Journal of Mathematics, v. 33, n. 3, p. 759-774, 2003. 0035-7596 10.1216/rmjm/1181069926 WOS:000220011400001 2-s2.0-1642296780 2-s2.0-1642296780.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rocky Mountain Journal of Mathematics 0.330 0,398 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
759-774 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128606913691648 |