Conformal defects from string field theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/JHEP01(2021)120 http://hdl.handle.net/11449/207186 |
Resumo: | Unlike conformal boundary conditions, conformal defects of Virasoro minimal models lack classification. Alternatively to the defect perturbation theory and the truncated conformal space approach, we employ open string field theory (OSFT) techniques to explore the space of conformal defects. We illustrate the method by an analysis of OSFT around the background associated to the (1, 2) topological defect in diagonal unitary minimal models. Numerical analysis of OSFT equations of motion leads to an identification of a nice family of solutions, recovering the picture of infrared fixed points due to Kormos, Runkel and Watts. In particular, we find a continuum of solutions in the Ising model case and 6 solutions for other minimal models. OSFT provides us with numerical estimates of the g-function and other coefficients of the boundary state. |
id |
UNSP_8a4a82817b2fef8f81927ce6992a5eeb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207186 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Conformal defects from string field theoryConformal Field TheoryString Field TheoryUnlike conformal boundary conditions, conformal defects of Virasoro minimal models lack classification. Alternatively to the defect perturbation theory and the truncated conformal space approach, we employ open string field theory (OSFT) techniques to explore the space of conformal defects. We illustrate the method by an analysis of OSFT around the background associated to the (1, 2) topological defect in diagonal unitary minimal models. Numerical analysis of OSFT equations of motion leads to an identification of a nice family of solutions, recovering the picture of infrared fixed points due to Kormos, Runkel and Watts. In particular, we find a continuum of solutions in the Ising model case and 6 solutions for other minimal models. OSFT provides us with numerical estimates of the g-function and other coefficients of the boundary state.Perimeter Institute for Theoretical Physics, 31 Caroline St NDepartment of Physics & Astronomy University of Waterloo, 200 University Avenue WCEICO Institute of Physics of the Czech Academy of Sciences, Na Slovance 2Center for Theoretical Physics University of California, 366 Le Conte HallICTP South American Institute for Fundamental Research IFT-UNESP, Rua Dr. Bento Teobaldo Ferraz 271ICTP South American Institute for Fundamental Research IFT-UNESP, Rua Dr. Bento Teobaldo Ferraz 271Perimeter Institute for Theoretical PhysicsUniversity of WaterlooInstitute of Physics of the Czech Academy of SciencesUniversity of CaliforniaUniversidade Estadual Paulista (Unesp)Budzik, KasiaRapčák, MiroslavRojas, Jairo M. [UNESP]2021-06-25T10:50:23Z2021-06-25T10:50:23Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/JHEP01(2021)120Journal of High Energy Physics, v. 2021, n. 1, 2021.1029-8479http://hdl.handle.net/11449/20718610.1007/JHEP01(2021)1202-s2.0-85099953312Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physicsinfo:eu-repo/semantics/openAccess2021-10-23T16:23:11Zoai:repositorio.unesp.br:11449/207186Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:03:44.157565Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Conformal defects from string field theory |
title |
Conformal defects from string field theory |
spellingShingle |
Conformal defects from string field theory Budzik, Kasia Conformal Field Theory String Field Theory |
title_short |
Conformal defects from string field theory |
title_full |
Conformal defects from string field theory |
title_fullStr |
Conformal defects from string field theory |
title_full_unstemmed |
Conformal defects from string field theory |
title_sort |
Conformal defects from string field theory |
author |
Budzik, Kasia |
author_facet |
Budzik, Kasia Rapčák, Miroslav Rojas, Jairo M. [UNESP] |
author_role |
author |
author2 |
Rapčák, Miroslav Rojas, Jairo M. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Perimeter Institute for Theoretical Physics University of Waterloo Institute of Physics of the Czech Academy of Sciences University of California Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Budzik, Kasia Rapčák, Miroslav Rojas, Jairo M. [UNESP] |
dc.subject.por.fl_str_mv |
Conformal Field Theory String Field Theory |
topic |
Conformal Field Theory String Field Theory |
description |
Unlike conformal boundary conditions, conformal defects of Virasoro minimal models lack classification. Alternatively to the defect perturbation theory and the truncated conformal space approach, we employ open string field theory (OSFT) techniques to explore the space of conformal defects. We illustrate the method by an analysis of OSFT around the background associated to the (1, 2) topological defect in diagonal unitary minimal models. Numerical analysis of OSFT equations of motion leads to an identification of a nice family of solutions, recovering the picture of infrared fixed points due to Kormos, Runkel and Watts. In particular, we find a continuum of solutions in the Ising model case and 6 solutions for other minimal models. OSFT provides us with numerical estimates of the g-function and other coefficients of the boundary state. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:50:23Z 2021-06-25T10:50:23Z 2021-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/JHEP01(2021)120 Journal of High Energy Physics, v. 2021, n. 1, 2021. 1029-8479 http://hdl.handle.net/11449/207186 10.1007/JHEP01(2021)120 2-s2.0-85099953312 |
url |
http://dx.doi.org/10.1007/JHEP01(2021)120 http://hdl.handle.net/11449/207186 |
identifier_str_mv |
Journal of High Energy Physics, v. 2021, n. 1, 2021. 1029-8479 10.1007/JHEP01(2021)120 2-s2.0-85099953312 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of High Energy Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128603783692288 |