Bayesian inference for two-parameter gamma distribution assuming different noninformative priors

Detalhes bibliográficos
Autor(a) principal: Moala, Fernando Antonio [UNESP]
Data de Publicação: 2013
Outros Autores: Ramos, Pedro Luiz [UNESP], Achcar, Jorge Alberto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://revistas.unal.edu.co/index.php/estad/article/view/44351
http://hdl.handle.net/11449/112051
Resumo: In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.
id UNSP_8b409ca6e7d45e5c3030c4a7c91b060e
oai_identifier_str oai:repositorio.unesp.br:11449/112051
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bayesian inference for two-parameter gamma distribution assuming different noninformative priorsGamma distributionnoninformative priorcopulaconjugateJeffreys priorreferenceMDIPorthogonalMCMCIn this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.Univ Estadual Paulista, Fac Ciencia & Tecnol, Dept Estadist, Presidente Prudente, BrazilUniv Sao Paulo, Fac Med Ribeirao Preto, Dept Social Med, BR-14049 Ribeirao Preto, BrazilUniv Estadual Paulista, Fac Ciencia & Tecnol, Dept Estadist, Presidente Prudente, BrazilUniv Nac Colombia, Dept EstadisticaUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Moala, Fernando Antonio [UNESP]Ramos, Pedro Luiz [UNESP]Achcar, Jorge Alberto2014-12-03T13:09:11Z2014-12-03T13:09:11Z2013-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article321-338application/pdfhttp://revistas.unal.edu.co/index.php/estad/article/view/44351Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013.0120-1751http://hdl.handle.net/11449/112051WOS:000331380600009WOS000331380600009.pdf16212695523666970000-0002-2445-0407Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Colombiana De Estadistica0,361info:eu-repo/semantics/openAccess2024-06-18T18:18:17Zoai:repositorio.unesp.br:11449/112051Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:45:41.084577Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
title Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
spellingShingle Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
Moala, Fernando Antonio [UNESP]
Gamma distribution
noninformative prior
copula
conjugate
Jeffreys prior
reference
MDIP
orthogonal
MCMC
title_short Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
title_full Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
title_fullStr Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
title_full_unstemmed Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
title_sort Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
author Moala, Fernando Antonio [UNESP]
author_facet Moala, Fernando Antonio [UNESP]
Ramos, Pedro Luiz [UNESP]
Achcar, Jorge Alberto
author_role author
author2 Ramos, Pedro Luiz [UNESP]
Achcar, Jorge Alberto
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Moala, Fernando Antonio [UNESP]
Ramos, Pedro Luiz [UNESP]
Achcar, Jorge Alberto
dc.subject.por.fl_str_mv Gamma distribution
noninformative prior
copula
conjugate
Jeffreys prior
reference
MDIP
orthogonal
MCMC
topic Gamma distribution
noninformative prior
copula
conjugate
Jeffreys prior
reference
MDIP
orthogonal
MCMC
description In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-01
2014-12-03T13:09:11Z
2014-12-03T13:09:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.unal.edu.co/index.php/estad/article/view/44351
Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013.
0120-1751
http://hdl.handle.net/11449/112051
WOS:000331380600009
WOS000331380600009.pdf
1621269552366697
0000-0002-2445-0407
url http://revistas.unal.edu.co/index.php/estad/article/view/44351
http://hdl.handle.net/11449/112051
identifier_str_mv Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013.
0120-1751
WOS:000331380600009
WOS000331380600009.pdf
1621269552366697
0000-0002-2445-0407
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Colombiana De Estadistica
0,361
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 321-338
application/pdf
dc.publisher.none.fl_str_mv Univ Nac Colombia, Dept Estadistica
publisher.none.fl_str_mv Univ Nac Colombia, Dept Estadistica
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129460778565632