Bayesian inference for two-parameter gamma distribution assuming different noninformative priors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://revistas.unal.edu.co/index.php/estad/article/view/44351 http://hdl.handle.net/11449/112051 |
Resumo: | In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors. |
id |
UNSP_8b409ca6e7d45e5c3030c4a7c91b060e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/112051 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priorsGamma distributionnoninformative priorcopulaconjugateJeffreys priorreferenceMDIPorthogonalMCMCIn this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.Univ Estadual Paulista, Fac Ciencia & Tecnol, Dept Estadist, Presidente Prudente, BrazilUniv Sao Paulo, Fac Med Ribeirao Preto, Dept Social Med, BR-14049 Ribeirao Preto, BrazilUniv Estadual Paulista, Fac Ciencia & Tecnol, Dept Estadist, Presidente Prudente, BrazilUniv Nac Colombia, Dept EstadisticaUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Moala, Fernando Antonio [UNESP]Ramos, Pedro Luiz [UNESP]Achcar, Jorge Alberto2014-12-03T13:09:11Z2014-12-03T13:09:11Z2013-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article321-338application/pdfhttp://revistas.unal.edu.co/index.php/estad/article/view/44351Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013.0120-1751http://hdl.handle.net/11449/112051WOS:000331380600009WOS000331380600009.pdf16212695523666970000-0002-2445-0407Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Colombiana De Estadistica0,361info:eu-repo/semantics/openAccess2024-06-18T18:18:17Zoai:repositorio.unesp.br:11449/112051Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:45:41.084577Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
title |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
spellingShingle |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors Moala, Fernando Antonio [UNESP] Gamma distribution noninformative prior copula conjugate Jeffreys prior reference MDIP orthogonal MCMC |
title_short |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
title_full |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
title_fullStr |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
title_full_unstemmed |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
title_sort |
Bayesian inference for two-parameter gamma distribution assuming different noninformative priors |
author |
Moala, Fernando Antonio [UNESP] |
author_facet |
Moala, Fernando Antonio [UNESP] Ramos, Pedro Luiz [UNESP] Achcar, Jorge Alberto |
author_role |
author |
author2 |
Ramos, Pedro Luiz [UNESP] Achcar, Jorge Alberto |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Moala, Fernando Antonio [UNESP] Ramos, Pedro Luiz [UNESP] Achcar, Jorge Alberto |
dc.subject.por.fl_str_mv |
Gamma distribution noninformative prior copula conjugate Jeffreys prior reference MDIP orthogonal MCMC |
topic |
Gamma distribution noninformative prior copula conjugate Jeffreys prior reference MDIP orthogonal MCMC |
description |
In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 2014-12-03T13:09:11Z 2014-12-03T13:09:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.unal.edu.co/index.php/estad/article/view/44351 Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013. 0120-1751 http://hdl.handle.net/11449/112051 WOS:000331380600009 WOS000331380600009.pdf 1621269552366697 0000-0002-2445-0407 |
url |
http://revistas.unal.edu.co/index.php/estad/article/view/44351 http://hdl.handle.net/11449/112051 |
identifier_str_mv |
Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013. 0120-1751 WOS:000331380600009 WOS000331380600009.pdf 1621269552366697 0000-0002-2445-0407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Colombiana De Estadistica 0,361 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
321-338 application/pdf |
dc.publisher.none.fl_str_mv |
Univ Nac Colombia, Dept Estadistica |
publisher.none.fl_str_mv |
Univ Nac Colombia, Dept Estadistica |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129460778565632 |