Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model

Detalhes bibliográficos
Autor(a) principal: do Carmo Yamaguti, Lucas [UNESP]
Data de Publicação: 2021
Outros Autores: Home-Ortiz, Juan M. [UNESP], Pourakbari-Kasmaei, Mahdi, Santos, Sérgio F., Mantovani, José Roberto Sanches [UNESP], Catalão, João P.S.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584817
http://hdl.handle.net/11449/234268
Resumo: This work presents an extension of a second-order conic programming model (SOCP) to handle the multi-objective optimal power dispatch problem considering the probabilistic nature of some parameters related to power demand and the renewable energy sources (RES) generation, such as wind speed and solar irradiation level. Three objective functions are considered in this study: 1) costs of RES and non-RES generation; 2) active power losses in the transmission system; and, 3) emission pollutant gases produced by fossil fuel-based generating units. The stochastic nature of power demands and RES are developed through a set of representative operational scenarios extracted from historical data and via a scenario reduction technique. The results obtained in the SOCP model are compared with a nonlinear programming (NLP) model to check the robustness and precision of SOCP model. To this, both models are implemented and processed to simulate the optimal flow for the IEEE 57- and 118-bus systems.
id UNSP_8c4679b8fa7198c48051101879af522c
oai_identifier_str oai:repositorio.unesp.br:11449/234268
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic ModelEmission pollutant gasesmulti-objective optimizationoptimal power dispatchrenewable energysecond-order conic programmingThis work presents an extension of a second-order conic programming model (SOCP) to handle the multi-objective optimal power dispatch problem considering the probabilistic nature of some parameters related to power demand and the renewable energy sources (RES) generation, such as wind speed and solar irradiation level. Three objective functions are considered in this study: 1) costs of RES and non-RES generation; 2) active power losses in the transmission system; and, 3) emission pollutant gases produced by fossil fuel-based generating units. The stochastic nature of power demands and RES are developed through a set of representative operational scenarios extracted from historical data and via a scenario reduction technique. The results obtained in the SOCP model are compared with a nonlinear programming (NLP) model to check the robustness and precision of SOCP model. To this, both models are implemented and processed to simulate the optimal flow for the IEEE 57- and 118-bus systems.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Programa Operacional Temático Factores de CompetitividadeFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Electrical Engineering São Paulo State UniversityDepartment of Electrical Engineering and Automation Aalto UniversityPortucalense Univ. Infante D. Henrique INESC TECFaculty of Engineering The University of Porto INESC TECDepartment of Electrical Engineering São Paulo State UniversityPrograma Operacional Temático Factores de Competitividade: 02/SAICT/2017FAPESP: 2015/21972-6FAPESP: 2019/01841-5FAPESP: 2019/23755-3CNPq: 304726/2020-6Programa Operacional Temático Factores de Competitividade: POCI-01-0145-FEDER-029803Universidade Estadual Paulista (UNESP)Aalto UniversityINESC TECdo Carmo Yamaguti, Lucas [UNESP]Home-Ortiz, Juan M. [UNESP]Pourakbari-Kasmaei, MahdiSantos, Sérgio F.Mantovani, José Roberto Sanches [UNESP]Catalão, João P.S.2022-05-01T15:30:01Z2022-05-01T15:30:01Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.958481721st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings.http://hdl.handle.net/11449/23426810.1109/EEEIC/ICPSEurope51590.2021.95848172-s2.0-85126437566Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedingsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:27Zoai:repositorio.unesp.br:11449/234268Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:24:15.971624Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
title Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
spellingShingle Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
do Carmo Yamaguti, Lucas [UNESP]
Emission pollutant gases
multi-objective optimization
optimal power dispatch
renewable energy
second-order conic programming
title_short Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
title_full Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
title_fullStr Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
title_full_unstemmed Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
title_sort Optimal Power Dispatch of Renewable and NonRenewable Generation through a Second-Order Conic Model
author do Carmo Yamaguti, Lucas [UNESP]
author_facet do Carmo Yamaguti, Lucas [UNESP]
Home-Ortiz, Juan M. [UNESP]
Pourakbari-Kasmaei, Mahdi
Santos, Sérgio F.
Mantovani, José Roberto Sanches [UNESP]
Catalão, João P.S.
author_role author
author2 Home-Ortiz, Juan M. [UNESP]
Pourakbari-Kasmaei, Mahdi
Santos, Sérgio F.
Mantovani, José Roberto Sanches [UNESP]
Catalão, João P.S.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Aalto University
INESC TEC
dc.contributor.author.fl_str_mv do Carmo Yamaguti, Lucas [UNESP]
Home-Ortiz, Juan M. [UNESP]
Pourakbari-Kasmaei, Mahdi
Santos, Sérgio F.
Mantovani, José Roberto Sanches [UNESP]
Catalão, João P.S.
dc.subject.por.fl_str_mv Emission pollutant gases
multi-objective optimization
optimal power dispatch
renewable energy
second-order conic programming
topic Emission pollutant gases
multi-objective optimization
optimal power dispatch
renewable energy
second-order conic programming
description This work presents an extension of a second-order conic programming model (SOCP) to handle the multi-objective optimal power dispatch problem considering the probabilistic nature of some parameters related to power demand and the renewable energy sources (RES) generation, such as wind speed and solar irradiation level. Three objective functions are considered in this study: 1) costs of RES and non-RES generation; 2) active power losses in the transmission system; and, 3) emission pollutant gases produced by fossil fuel-based generating units. The stochastic nature of power demands and RES are developed through a set of representative operational scenarios extracted from historical data and via a scenario reduction technique. The results obtained in the SOCP model are compared with a nonlinear programming (NLP) model to check the robustness and precision of SOCP model. To this, both models are implemented and processed to simulate the optimal flow for the IEEE 57- and 118-bus systems.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-05-01T15:30:01Z
2022-05-01T15:30:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584817
21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings.
http://hdl.handle.net/11449/234268
10.1109/EEEIC/ICPSEurope51590.2021.9584817
2-s2.0-85126437566
url http://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584817
http://hdl.handle.net/11449/234268
identifier_str_mv 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings.
10.1109/EEEIC/ICPSEurope51590.2021.9584817
2-s2.0-85126437566
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128510548508672