Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle

Detalhes bibliográficos
Autor(a) principal: de Albuquerque, Luiz C. [UNESP]
Data de Publicação: 2003
Outros Autores: deLyra, Jorge L., Teotonio-Sobrinho, Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevLett.91.081301
http://hdl.handle.net/11449/219295
Resumo: The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number [Formula presented] of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value [Formula presented], the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of [Formula presented]. Moreover, the space-time dimension [Formula presented] is a dynamical observable in our model, and plays the role of an order parameter. The computation of [Formula presented] is discussed and an upper bound is found, [Formula presented]. © 2003 The American Physical Society.
id UNSP_8c658ac74b4fc33e1d4ea721900da298
oai_identifier_str oai:repositorio.unesp.br:11449/219295
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral PrincipleThe spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number [Formula presented] of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value [Formula presented], the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of [Formula presented]. Moreover, the space-time dimension [Formula presented] is a dynamical observable in our model, and plays the role of an order parameter. The computation of [Formula presented] is discussed and an upper bound is found, [Formula presented]. © 2003 The American Physical Society.Faculdade de Tecnologia de São Paulo-DEG-CEETEPS-UNESP Praça Fernando Prestes, São Paulo, 01124-060Universidade de São Paulo Instituto de Física-DFMA, Caixa Postal 66318, 05315-970Faculdade de Tecnologia de São Paulo-DEG-CEETEPS-UNESP Praça Fernando Prestes, São Paulo, 01124-060Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)de Albuquerque, Luiz C. [UNESP]deLyra, Jorge L.Teotonio-Sobrinho, Paulo2022-04-28T18:54:43Z2022-04-28T18:54:43Z2003-08-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevLett.91.081301Physical Review Letters, v. 91, n. 8, 2003.1079-71140031-9007http://hdl.handle.net/11449/21929510.1103/PhysRevLett.91.0813012-s2.0-0141973590Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Lettersinfo:eu-repo/semantics/openAccess2022-04-28T18:54:43Zoai:repositorio.unesp.br:11449/219295Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:41:20.851266Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
title Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
spellingShingle Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
de Albuquerque, Luiz C. [UNESP]
title_short Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
title_full Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
title_fullStr Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
title_full_unstemmed Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
title_sort Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle
author de Albuquerque, Luiz C. [UNESP]
author_facet de Albuquerque, Luiz C. [UNESP]
deLyra, Jorge L.
Teotonio-Sobrinho, Paulo
author_role author
author2 deLyra, Jorge L.
Teotonio-Sobrinho, Paulo
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv de Albuquerque, Luiz C. [UNESP]
deLyra, Jorge L.
Teotonio-Sobrinho, Paulo
description The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number [Formula presented] of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value [Formula presented], the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of [Formula presented]. Moreover, the space-time dimension [Formula presented] is a dynamical observable in our model, and plays the role of an order parameter. The computation of [Formula presented] is discussed and an upper bound is found, [Formula presented]. © 2003 The American Physical Society.
publishDate 2003
dc.date.none.fl_str_mv 2003-08-22
2022-04-28T18:54:43Z
2022-04-28T18:54:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevLett.91.081301
Physical Review Letters, v. 91, n. 8, 2003.
1079-7114
0031-9007
http://hdl.handle.net/11449/219295
10.1103/PhysRevLett.91.081301
2-s2.0-0141973590
url http://dx.doi.org/10.1103/PhysRevLett.91.081301
http://hdl.handle.net/11449/219295
identifier_str_mv Physical Review Letters, v. 91, n. 8, 2003.
1079-7114
0031-9007
10.1103/PhysRevLett.91.081301
2-s2.0-0141973590
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review Letters
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129543777550336