On the Chern classes of singular complete intersections
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1112/topo.12129 http://hdl.handle.net/11449/198596 |
Resumo: | We consider two classical extensions for singular varieties of the usual Chern classes of complex manifolds, namely the total Schwartz–MacPherson and Fulton–Johnson classes, cSM(X) and cFJ(X). Their difference (up to sign) is the total Milnor class M(X), a gener-alization of the Milnor number for varieties with arbitrary singular set. We get first Verdier-Riemann–Roch type formulae for the total classes cSM(X) and cFJ(X), and use these to prove a surprisingly simple formula for the total Milnor class when X is defined by a finite number of local complete intersection X1,.....,Xr in a complex manifold, satisfying certain transversality conditions. As applications, we obtain a Parusiński–Pragacz type formula and an Aluffi type formula for the Milnor class, and a description of the Milnor classes of X in terms of the global Lê classes of the Xi. |
id |
UNSP_8cfa97a9644a03d628a2b11400c1c2b7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/198596 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the Chern classes of singular complete intersections14B0514C1714M10 (primary)32S20 (secondary)55N45We consider two classical extensions for singular varieties of the usual Chern classes of complex manifolds, namely the total Schwartz–MacPherson and Fulton–Johnson classes, cSM(X) and cFJ(X). Their difference (up to sign) is the total Milnor class M(X), a gener-alization of the Milnor number for varieties with arbitrary singular set. We get first Verdier-Riemann–Roch type formulae for the total classes cSM(X) and cFJ(X), and use these to prove a surprisingly simple formula for the total Milnor class when X is defined by a finite number of local complete intersection X1,.....,Xr in a complex manifold, satisfying certain transversality conditions. As applications, we obtain a Parusiński–Pragacz type formula and an Aluffi type formula for the Milnor class, and a description of the Milnor classes of X in terms of the global Lê classes of the Xi.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Centro de Ciências Exatas e da Natureza Universidade Federal da Paraíba-UFPbInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista-UNESPInstituto de Matemáticas Universidad Nacional Autónoma de MéxicoInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista-UNESPUniversidade Federal da Paraíba (UFPB)Universidade Estadual Paulista (Unesp)Universidad Nacional Autónoma de MéxicoCallejas-Bedregal, RobertoMorgado, Michelle F. Z. [UNESP]Seade, José2020-12-12T01:17:10Z2020-12-12T01:17:10Z2020-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article159-174http://dx.doi.org/10.1112/topo.12129Journal of Topology, v. 13, n. 1, p. 159-174, 2020.1753-84241753-8416http://hdl.handle.net/11449/19859610.1112/topo.121292-s2.0-85081025408Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Topologyinfo:eu-repo/semantics/openAccess2021-10-22T17:19:40Zoai:repositorio.unesp.br:11449/198596Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:09:33.068401Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the Chern classes of singular complete intersections |
title |
On the Chern classes of singular complete intersections |
spellingShingle |
On the Chern classes of singular complete intersections Callejas-Bedregal, Roberto 14B05 14C17 14M10 (primary) 32S20 (secondary) 55N45 |
title_short |
On the Chern classes of singular complete intersections |
title_full |
On the Chern classes of singular complete intersections |
title_fullStr |
On the Chern classes of singular complete intersections |
title_full_unstemmed |
On the Chern classes of singular complete intersections |
title_sort |
On the Chern classes of singular complete intersections |
author |
Callejas-Bedregal, Roberto |
author_facet |
Callejas-Bedregal, Roberto Morgado, Michelle F. Z. [UNESP] Seade, José |
author_role |
author |
author2 |
Morgado, Michelle F. Z. [UNESP] Seade, José |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal da Paraíba (UFPB) Universidade Estadual Paulista (Unesp) Universidad Nacional Autónoma de México |
dc.contributor.author.fl_str_mv |
Callejas-Bedregal, Roberto Morgado, Michelle F. Z. [UNESP] Seade, José |
dc.subject.por.fl_str_mv |
14B05 14C17 14M10 (primary) 32S20 (secondary) 55N45 |
topic |
14B05 14C17 14M10 (primary) 32S20 (secondary) 55N45 |
description |
We consider two classical extensions for singular varieties of the usual Chern classes of complex manifolds, namely the total Schwartz–MacPherson and Fulton–Johnson classes, cSM(X) and cFJ(X). Their difference (up to sign) is the total Milnor class M(X), a gener-alization of the Milnor number for varieties with arbitrary singular set. We get first Verdier-Riemann–Roch type formulae for the total classes cSM(X) and cFJ(X), and use these to prove a surprisingly simple formula for the total Milnor class when X is defined by a finite number of local complete intersection X1,.....,Xr in a complex manifold, satisfying certain transversality conditions. As applications, we obtain a Parusiński–Pragacz type formula and an Aluffi type formula for the Milnor class, and a description of the Milnor classes of X in terms of the global Lê classes of the Xi. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:17:10Z 2020-12-12T01:17:10Z 2020-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1112/topo.12129 Journal of Topology, v. 13, n. 1, p. 159-174, 2020. 1753-8424 1753-8416 http://hdl.handle.net/11449/198596 10.1112/topo.12129 2-s2.0-85081025408 |
url |
http://dx.doi.org/10.1112/topo.12129 http://hdl.handle.net/11449/198596 |
identifier_str_mv |
Journal of Topology, v. 13, n. 1, p. 159-174, 2020. 1753-8424 1753-8416 10.1112/topo.12129 2-s2.0-85081025408 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Topology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
159-174 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129027133669376 |