On the Chern classes of singular complete intersections

Detalhes bibliográficos
Autor(a) principal: Callejas-Bedregal, Roberto
Data de Publicação: 2020
Outros Autores: Morgado, Michelle F. Z. [UNESP], Seade, José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1112/topo.12129
http://hdl.handle.net/11449/198596
Resumo: We consider two classical extensions for singular varieties of the usual Chern classes of complex manifolds, namely the total Schwartz–MacPherson and Fulton–Johnson classes, cSM(X) and cFJ(X). Their difference (up to sign) is the total Milnor class M(X), a gener-alization of the Milnor number for varieties with arbitrary singular set. We get first Verdier-Riemann–Roch type formulae for the total classes cSM(X) and cFJ(X), and use these to prove a surprisingly simple formula for the total Milnor class when X is defined by a finite number of local complete intersection X1,.....,Xr in a complex manifold, satisfying certain transversality conditions. As applications, we obtain a Parusiński–Pragacz type formula and an Aluffi type formula for the Milnor class, and a description of the Milnor classes of X in terms of the global Lê classes of the Xi.
id UNSP_8cfa97a9644a03d628a2b11400c1c2b7
oai_identifier_str oai:repositorio.unesp.br:11449/198596
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the Chern classes of singular complete intersections14B0514C1714M10 (primary)32S20 (secondary)55N45We consider two classical extensions for singular varieties of the usual Chern classes of complex manifolds, namely the total Schwartz–MacPherson and Fulton–Johnson classes, cSM(X) and cFJ(X). Their difference (up to sign) is the total Milnor class M(X), a gener-alization of the Milnor number for varieties with arbitrary singular set. We get first Verdier-Riemann–Roch type formulae for the total classes cSM(X) and cFJ(X), and use these to prove a surprisingly simple formula for the total Milnor class when X is defined by a finite number of local complete intersection X1,.....,Xr in a complex manifold, satisfying certain transversality conditions. As applications, we obtain a Parusiński–Pragacz type formula and an Aluffi type formula for the Milnor class, and a description of the Milnor classes of X in terms of the global Lê classes of the Xi.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Centro de Ciências Exatas e da Natureza Universidade Federal da Paraíba-UFPbInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista-UNESPInstituto de Matemáticas Universidad Nacional Autónoma de MéxicoInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista-UNESPUniversidade Federal da Paraíba (UFPB)Universidade Estadual Paulista (Unesp)Universidad Nacional Autónoma de MéxicoCallejas-Bedregal, RobertoMorgado, Michelle F. Z. [UNESP]Seade, José2020-12-12T01:17:10Z2020-12-12T01:17:10Z2020-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article159-174http://dx.doi.org/10.1112/topo.12129Journal of Topology, v. 13, n. 1, p. 159-174, 2020.1753-84241753-8416http://hdl.handle.net/11449/19859610.1112/topo.121292-s2.0-85081025408Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Topologyinfo:eu-repo/semantics/openAccess2021-10-22T17:19:40Zoai:repositorio.unesp.br:11449/198596Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:09:33.068401Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the Chern classes of singular complete intersections
title On the Chern classes of singular complete intersections
spellingShingle On the Chern classes of singular complete intersections
Callejas-Bedregal, Roberto
14B05
14C17
14M10 (primary)
32S20 (secondary)
55N45
title_short On the Chern classes of singular complete intersections
title_full On the Chern classes of singular complete intersections
title_fullStr On the Chern classes of singular complete intersections
title_full_unstemmed On the Chern classes of singular complete intersections
title_sort On the Chern classes of singular complete intersections
author Callejas-Bedregal, Roberto
author_facet Callejas-Bedregal, Roberto
Morgado, Michelle F. Z. [UNESP]
Seade, José
author_role author
author2 Morgado, Michelle F. Z. [UNESP]
Seade, José
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal da Paraíba (UFPB)
Universidade Estadual Paulista (Unesp)
Universidad Nacional Autónoma de México
dc.contributor.author.fl_str_mv Callejas-Bedregal, Roberto
Morgado, Michelle F. Z. [UNESP]
Seade, José
dc.subject.por.fl_str_mv 14B05
14C17
14M10 (primary)
32S20 (secondary)
55N45
topic 14B05
14C17
14M10 (primary)
32S20 (secondary)
55N45
description We consider two classical extensions for singular varieties of the usual Chern classes of complex manifolds, namely the total Schwartz–MacPherson and Fulton–Johnson classes, cSM(X) and cFJ(X). Their difference (up to sign) is the total Milnor class M(X), a gener-alization of the Milnor number for varieties with arbitrary singular set. We get first Verdier-Riemann–Roch type formulae for the total classes cSM(X) and cFJ(X), and use these to prove a surprisingly simple formula for the total Milnor class when X is defined by a finite number of local complete intersection X1,.....,Xr in a complex manifold, satisfying certain transversality conditions. As applications, we obtain a Parusiński–Pragacz type formula and an Aluffi type formula for the Milnor class, and a description of the Milnor classes of X in terms of the global Lê classes of the Xi.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:17:10Z
2020-12-12T01:17:10Z
2020-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1112/topo.12129
Journal of Topology, v. 13, n. 1, p. 159-174, 2020.
1753-8424
1753-8416
http://hdl.handle.net/11449/198596
10.1112/topo.12129
2-s2.0-85081025408
url http://dx.doi.org/10.1112/topo.12129
http://hdl.handle.net/11449/198596
identifier_str_mv Journal of Topology, v. 13, n. 1, p. 159-174, 2020.
1753-8424
1753-8416
10.1112/topo.12129
2-s2.0-85081025408
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Topology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 159-174
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129027133669376